In our previous work we were able to prove that gelled bicontinuous microemulsions are a novel type of orthogonal self-assembled system. The study at hand aims at complementing our previous work by answering the question of whether gelled lyotropic liquid crystals are also orthogonal self-assembled systems. For this purpose we studied the same system, namely, water-n-decane/12-hydroxyoctadecanoic acid (12-HOA)-n-decyl tetraoxyethylene glycol ether (C10E4). The phase boundaries of the nongelled and the gelled lyotropic liquid crystals were determined visually and with (2)H NMR spectroscopy. Oscillating shear measurements revealed that the absolute values of the storage and loss moduli of the gelled liquid crystalline (LC) phases do not differ very much from those of the binary organogel. While both the phase behavior and the rheological properties of the LC phases support the hypothesis that gelled lyotropic liquid crystals are orthogonal self-assembled systems, freeze-fracture electron microscopy (FFEM) seems to indicate an influence of the gel network on the structure of the Lα phase and vice versa.
By the introduction of a generalized magnetic vector potential, which contains the contributions of both the magnetic and electric parts, and the use of the Ampere's law within the quasistatic approximation as the state equation, the partial differential equations for governing the electromagnetic properties of superconductors as well as the surrounding coolant were established and numerically discretized by resorting to the finite-element technique and finite-difference scheme, respectively, in the spatial and temporal domain. In conjunction with an analytic method to calculate the magnetic field generated by permanent magnet, we compiled a numerical tool for performing an intricate study of the mutual effect among the superconducting constituents in a superconducting levitation system with translational symmetry. Taking a superconducting unit with three constituents inside as a practice, we simulated the electromagnetic responses of this unit while moving in the nonuniform magnetic field generated by permanent magnet guideway and, identified the influences of the mutual effect on the levitation force as well as on the distributions of the magnetic flux density, the supercurrent density, and the levitation force density by comparing to an envisaged reference, one constituent was simulated with all the rest absent to remove the mutual effect. The insights attained by the present study, mostly being inaccessible from the experiments, are aimed to provide useful implications for the design of a superconducting levitation system for the transit and analogous purposes, which usually employ multiple superconductors to achieve the desired capability.
The first-order metal-insulator transition (MIT) in magnetite has been known for a long time but is still controversial in its nature. In this study, well-defined magnetite nanocrystals (NCs) with controllable size, shape and terminated surface are first employed to elucidate this important issue, and new discoveries such as a highly suppressed phase transition temperature are identified by monitoring the variable-temperature electric resistance and infrared spectroscopy. Significantly, by carefully comparing the infrared vibrational bands of the as-prepared magnetite NCs with octahedral and cubic shapes, respectively, we found that these two forms of magnetite NCs exhibited different transmittance changes and frequency shifts of the infrared characteristics, presumably due to the differences in the lattice distortions on the corresponding {001} and {111} terminal surfaces. This result produced evidence in support of the charge ordering of Fe atoms along the low dimensionality at octahedral B sites undergoing the MIT. Taken together, infrared identification was proposed to be an available characterization strategy for MIT, which can reflect more information on the elusive lattice distortion of crystallographic structure or exposed surfaces.
A conceptual structure of a 10-MW salient-pole wind turbine generator with race-track-shaped high-temperature superconductor (HTS) field coils is proposed, and a novel electrical design method for the salient-pole wind turbine HTS synchronous generators (WTHGs) is developed. In addition, the novel electrical design method derivation is introduced in detail according to the design process. In addition, the influence of some main machine parameters, e.g., pole pitch, stator outer diameter, magnetic flux density in the stator teeth, and electric loading, on HTS generator performance is clarified, and the optimal parameters are obtained thereby. Moreover, the optimized performance parameters of a 10-MW WTHG are compared with the conventional wind turbine generators with copper field windings. Finally, it is indicated that large-scale WTHGs have a higher power density, lighter weight, and higher efficiency than the conventional counterparts.Index Terms-Electrical design method, high-temperature superconductor (HTS) field coil, machine parameter, optimized design, salient-pole HTS generator. 1051-8223
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.