Complex characteristics of the plateau environment such as low oxygen content seriously restrict the exploitation of abundant mineral resources in plateau areas. To regulate the hypoxia environment and improve the comfort of workers engaged in intense physical labor like tunnel excavation operations in plateau mines, an individual oxygen-supply device for tunnel of plateau mine was proposed to create local oxygen enrichment in the area around the human nose. The Computational Fluid Dynamics (CFD) method was used to judge the application’s effect of the individual oxygen-supply device in plateau mine, revealing the oxygen diffusion law under the influence of different oxygen enrichment factors. The orthogonal design and range analysis were used to measure the degree of influence of major factors such as oxygen-supply velocity, oxygen-supply concentration, and tunnel airflow velocity. The results demonstrate that the oxygen mass fraction of the air inhaled by the human had a positive correlation exponential function, a positive correlation linear function, and a negative correlation exponential function, respectively, concerning oxygen-supply velocity, oxygen-supply concentration, and tunnel airflow velocity. The range analysis revealed that the major influencing factors of oxygen enrichment in the tunnel of the plateau mine were, in a descending sequence, as follows: oxygen-supply concentration, tunnel airflow velocity, and oxygen-supply velocity, and the corresponding ranges were 2.86, 2.63, and 1.83, respectively. The individual oxygen-supply device achieved the best oxygen enrichment effect when the oxygen-supply velocity was 5 m/s, the oxygen-supply concentration was 60%, and the tunnel airflow velocity was 0.2 m/s, which increased the oxygen mass fraction of air inhaled by the human to 30.42%. This study has a positive guiding significance for the improvement of the respiration environment in the tunnel of plateau mine.
There are abundant mineral resources in plateau areas, but it is difficult to extract them safely because the problem of hypoxia in plateau mines seriously affects the life and health of workers. In order to address the problem of hypoxia in the blind heading of a plateau metal mine, a three-dimensional roadway model was established based on field data of the Pulang copper mine in Yunnan province, China. The computational fluid dynamics (CFD) method was used to explore the optimal type of oxygen supply duct outlet, and to reveal the oxygen diffusion law influencing different ventilation factors. Grey correlation analysis was used to study the correlation values of the ventilation factors on the oxygen-enrichment effect in blind headings, such as forcing duct position, exhausting duct position, and extraction pressure ratio. The results demonstrated that the oxygen-enrichment effect of a slit oxygen outlet was better than that of the traditional oxygen supply method. When the direction of the oxygen outlet hole was 30° and the height above the roadway floor was 1.95 m, the oxygen increase effect was better than other forms of oxygen supply duct outlets. Grey correlation analysis revealed that the major influencing factors of the oxygen-enrichment effect in the roadway of the plateau mine, were, in descending order, as follows: forcing duct position, extraction pressure ratio, and exhausting duct position. This study has a positive guiding significance for improving the respiration environment in blind headings of plateau mines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.