As a functional beverage, selenium (Se)-enriched green tea (Se-GT) has gained increasing popularity for its superior properties in promoting health. In this study, we compared the brewing characteristics, in vitro digestion profiles, and protective effects on neurotoxicity induced through the amyloid-beta (Aβ) peptide of two typical Se-GTs (Enshi Yulu (ESYL) and Ziyang Maojian (ZYMJ), representing the typical low-Se green tea and high-Se green tea, respectively). ESYL and ZYMJ showed similar chemical component leaching properties with the different brewing methods, and the optimized brewing conditions were 5 min, 90 °C, 50 mL/g, and first brewing. The antioxidant activities of the tea infusions had the strongest positive correlation with the tea polyphenols among all of the leaching substances. The tea infusions of ESYL and ZYMJ showed similar digestive behaviors, and the tea polyphenols in the tea infusions were almost totally degraded or transferred after 150 min of dynamic digestion. Studies conducted in a cell model of Alzheimer’s disease (AD) showed that the extract from the high-Se green tea was more effective for neuroprotection compared with the low-Se green tea. Overall, our results revealed the best brewing conditions and digestion behaviors of Se-GT and the great potential of Se-GT or Se-enriched green extract (Se-GTE) to be used as promising AD-preventive beverages or food ingredients.
The incorporation of cereals in yogurt has recently gained increasing consumer approval, for its high nutritional value and health benefits, all over the world. Following this emerging trend, Tartary buckwheat (TB) was supplemented into yogurt as a natural functional ingredient in order to develop a yogurt with enhanced product characteristics and consumer acceptability. The impact of TB addition on physicochemical properties (pH, acidity, apparent viscosity, etc.) and the viability of lactic acid bacteria in yogurt was investigated. It is found that the TB introduction can reduce the pH, increase the acidity and apparent viscosity, and also greatly boost the bioactivities of yogurt. Response surface analysis demonstrated that yogurt with 8 g of TB, 10 g of sugar, and a fermentation duration of 5 h had the highest overall acceptability, and these cultural conditions were chosen as the best. Furthermore, the TB-added yogurt had not only a better sensory and aroma profile, but also good prospective health advantages when compared to regular yogurt. Our research shows that adding TB to yogurt has a significant positive impact on both overall quality and sensory characteristics, making a compelling case for using TB yogurt and developing new fermented dairy products.
Selenium-enriched peptide (SP, selenopeptide) is an excellent organic selenium supplement that has attracted increasing attention due to its superior physiological effects. In this study, dextran–whey protein isolation–SP (DX-WPI-SP) microcapsules were fabricated via high-voltage electrospraying technology. The results of preparation process optimization showed that the optimized preparation process parameters were 6% DX (w/v), feeding rate Q = 1 mL/h, voltage U = 15 kV, and receiving distance H = 15 cm. When the content of WPI (w/v) was 4–8%, the average diameter of the as-prepared microcapsules was no more than 45 μm, and the loading rate for SP ranged from ~46% to ~37%. The DX-WPI-SP microcapsules displayed excellent antioxidant capacity. The thermal stability of the microencapsulated SP was improved, which was attributed to the protective effects of the wall materials for SP. The release performance was investigated to disclose the sustained-release capacity of the carrier under different pH values and an in-vitro-simulated digestion environment. The digested microcapsule solution showed negligible influence on the cellular cytotoxicity of Caco-2 cells. Overall, our work provides a facile strategy of electrospraying microcapsules for the functional encapsulation of SP and witnesses a broad prospect that the DX-WPI-SP microcapsules can exhibit great potential in the food processing field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.