Fibronectin (Fn) is an extracellular matrix protein that orchestrates complex cell adhesion and signaling through cell surface integrin receptors during tissue development, remodeling, and disease, such as fibrosis. Fn is sensitive to mechanical forces in its tandem type III repeats, resulting in extensive molecular enlongation. As such, it has long been hypothesized that cell- and tissue-derived forces may activate an “integrin switch” within the critical integrin-binding ninth and 10th type III repeats—conferring differential integrin-binding specificity, leading to differential cell responses. Yet, no direct evidence exists to prove the hypothesis nor demonstrate the physiological existence of the switch. We report direct experimental evidence for the Fn integrin switch both in vitro and ex vivo using a scFv engineered to detect the transient, force-induced conformational change, representing an opportunity for detection and targeting of early molecular signatures of cell contractile forces in tissue repair and disease.
Epithelial cells connect via cell-cell junctions to form sheets of cells with separate cellular compartments. These cellular connections are essential for the generation of cellular forms and shapes consistent with organ function. Tissue modulation is dependent on the fine-tuning of mechanical forces that are transmitted in part through the actin connection to E-cadherin as well as other components in the adherens junctions. In this report we show that p100 amotL2 forms a complex with E-cadherin that associates with radial actin filaments connecting cells over multiple layers. Genetic inactivation or depletion of amotL2 in epithelial cells in vitro or zebrafish and mouse in vivo, resulted in the loss of contractile actin filaments and perturbed epithelial packing geometry. We further showed that AMOTL2 mRNA and protein was expressed in the trophectoderm of human and mouse blastocysts. Genetic inactivation of amotL2 did not affect cellular differentiation but blocked hatching of the blastocysts from the zona pellucida. These results were mimicked by treatment with the myosin II inhibitor blebbistatin. We propose that the tension generated by the E-cadherin/AmotL2/actin filaments plays a crucial role in developmental processes such as epithelial geometrical packing as well as generation of forces required for blastocyst hatching.A central question during development is how single cells form functional multi-cellular organ structures. The high reproducibility indicates intricate synchronization of cellular processes such as migration, proliferation and cell shape changes. Much attention has been focused on how growth factors form biochemical gradients that govern some of these processes 1-3 . However, less is known regarding how mechanical signals or forces modulate cell shape and control cellular expansion 4, 5 . Cells perceive and respond to exogenous mechanical forces via different points of contact in the outer membrane. Forces exerted on the extra-cellular matrix are detected by epithelial cells via integrins in focal adhesions which transfer tension from the extracellular matrix to the cytoskeleton 6 . Low rigidity in the extra-cellular matrix transfers less extracellular force and thereby promotes the formation of organ-like epithelial structures in vitro whereas increased force or stiffness in the matrix causes loss of tissue architecture associated with tumor progression and promotes cell proliferation [7][8][9][10] . Recent evidence has also shown that actomyosin contractility is transmitted via the adherens junctions. External forces applied to cadherins have indicated a mechanical coupling between the cytoplasmic domain of cadherin and the actin cytoskeleton 11 . Cellular interactions and the force-mediated morphological changes are also important for the processes involved in organ development. One example is apical contraction where the
Endothelial cells respond to mechanical forces exerted by blood flow. Endothelial cell–cell junctions and the sites of endothelial adhesion to the matrix sense and transmit mechanical forces to the cellular cytoskeleton. Here we show that the scaffold protein AmotL2 connects junctional VE-cadherin and actin filaments to the nuclear lamina. AmotL2 is essential for the formation of radial actin filaments and the alignment of endothelial cells, and, in its absence, nuclear integrity and positioning are altered. Molecular analysis demonstrated that VE-cadherin binds to AmotL2 and actin, resulting in a cascade that transmits extracellular mechanical signals to the nuclear membrane. Furthermore, the endothelial deficit of AmotL2 in mice fed normal diet provoked a pro-inflammatory response and abdominal aortic aneurysms (AAAs). Transcriptome analysis of human AAA samples revealed a negative correlation between AmotL2 and inflammation of the aortic intima. These findings offer insight into the link between junctional mechanotransduction and vascular disease.
Transmission of mechanical force via cell junctions is an important component that molds cells into shapes consistent with proper organ function. Of particular interest are the cadherin transmembrane proteins, which play an essential role in connecting cell junctions to the intra-cellular cytoskeleton. Understanding how these biomechanical complexes orchestrate intrinsic and extrinsic forces is important for our understanding of the underlying mechanisms driving morphogenesis. We have previously identified the Amot protein family, which are scaffold proteins that integrate polarity, junctional, and cytoskeletal cues to modulate cellular shape in endothelial as well as epithelial cells. In this report, we show that AmotL1 is a novel partner of the N-cadherin protein complex. We studied the role of AmotL1 in normal retinal as well as tumor angiogenesis using inducible endothelial-specific knock-out mice. We show that AmotL1 is essential for normal establishment of vascular networks in the post-natal mouse retina as well as in a transgenic breast cancer model. The observed phenotypes were consistent with a non-autonomous pericyte defect. We show that AmotL1 forms a complex with N-cadherin present on both endothelial cells and pericytes. We propose that AmotL1 is an essential effector of the N-cadherin mediated endothelial/pericyte junctional complex.
Endothelial cells (ECs) are constantly exposed to mechanical forces in the form of fluid shear stress, extracellular stiffness, and cyclic strain. How these forces are sensed by ECs remains an understudied aspect in the homeostatic regulation of the circulatory system. Angiomotin-like 2 (AmotL2) is localised to EC junctions and is required for alignment and actin reorganisation under conditions of high shear stress. Here we show that AmotL2 crucially regulates transcription and promotor activity of the YAP gene. Functionally, density-dependent proliferation of ECsin vitroand proliferation of a subpopulation of ECs within the inner aortic arch, were both reliant on AmotL2 and Yap/Taz endothelial expressionin vivo. Mechanistically, depletion of AmotL2 led to altered nuclear morphology, chromatin accessibility and suppression of YAP-promotor activity through increased H3K27me3 mediated by the polycromb repressive complex component EZH2. Our data describe a previously unknown role for junctional mechanotransduction in shaping the epigenetic landscape and transcriptional regulation of YAP in vascular homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.