Background To assess the prevalence of genetic testing for inherited retinal diseases (IRDs) in a tertiary practice setting. Methods Single-centre retrospective analysis of patients with diagnosed or suspected IRD. Results Four hundred and sixty-four patient records were analysed. Patients had received care for different IRDs grouped as follows: panretinal pigmentary retinopathies (283, 61%), macular dystrophies (136, 29.3%), stationary diseases (23, 5%), hereditary vitreoretinopathies (14, 3%), and other IRDs (8, 1.7%). The suspected pattern of inheritance of patients’ IRD was predominantly autosomal recessive (205, 44.2%). Genetic testing was performed with the corresponding results available for 44 patients (9.5%). Diagnostic yield was 65.9% for the results received. Genetic test results were available mostly for younger patients (13.1% for <45 years vs 6.2% ≥45 years of age, p = 0.01) and those who received greater than 12 months of care (16% for ≥12 months vs 4% for <12 months, p < 0.01). For patients without genetic testing results, reasons include awaiting a geneticist consultation (17.9%), awaiting test results (4.5%), or patient refusal (8.4%). Most clinical records (69.2%) did not document genetic testing status. Conclusion Genetic testing is increasingly being utilised in the work-up for patients with IRD worldwide. This large Australian private practice IRD cohort shows a low uptake of testing (around 10%), reflecting historical management patterns and accessibility of genetic counselling and testing. The results show that younger patients and those with a longer duration of care were more likely to have received genetic testing. As the importance of IRD genetic testing continues to increase, we expect to see a change in patient management within the Australian private ophthalmology system and testing rates to increase. Further research is required to identify and address clinician and patient barriers to improving genetic testing rates for IRD.
C2), making this possibility unlikely. Another cause for flow voids is the low velocity of flow such that it falls under the OCTA decorrelation threshold for detection (less than 0.3 mm/s in this case). This is also unlikely given the clinical setting and significant improvement of signal after treatment using the same machine. One may test this possibility using a custom variable interscan time analysis hardwareÀsoftware framework to detect slower flow.This case signifies the value of multimodal imaging and particularly OCTA not only to diagnose a life-threatening condition but also to utilize this imaging technique to determine the extent of choroidal infiltration at a microscopic level and to monitor the course of ocular disease with restoration of choroidal vascular flow indicating a response to treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.