Low-rank coal samples from the Xishanyao Formation in the southern Junggar basin of Xinjiang were processed under different negative pressures in order to examine the microstructural characteristics of low-rank coal reservoirs. The pore structures of low-rank coal under different negative pressures were tested using scanning electron microscopy, low-temperature nitrogen adsorption–desorption, and water saturation and centrifugal low-field NMR experiments. The results showed that for the low-rank coal samples from the study area, a high portion of the porosity and surface area came from micropores and small pores; the fractal dimension of the adsorption pores of the low-rank coal samples was divided into surface fractal dimension D1 and structural fractal dimension D2, which showed that the microstructure of the low-rank coal from the study area was complex. The transverse relaxation times T2 of the low-rank coal samples in the test were approximately 0.1~2.5, approximately 10, and greater than 100 ms; the T2 spectrum had basically three peak types. By combining scanning electron microscopy and nuclear magnetic resonance tests, it was concluded that the pore connectivity of the low-rank coal reservoirs in the study area was poor and the effective porosity was relatively low, which may be unfavorable for the exploration and development of coalbed methane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.