Medical robots have been widely used to assist surgeons to carry out dexterous surgical tasks via various ways. Most of the tasks require surgeon’s operation directly or indirectly. Certain level of autonomy in robotic surgery could not only free the surgeon from some tedious repetitive tasks, but also utilize the advantages of robot: high dexterity and accuracy. This paper presents a semi-autonomous neurosurgical procedure of brain tumor ablation using RAVEN Surgical Robot and stereo visual feedback. By integrating with the behavior tree framework, the whole surgical task is modeled flexibly and intelligently as nodes and leaves of a behavior tree. This paper provides three contributions mainly: (1) describing the brain tumor ablation as an ideal candidate for autonomous robotic surgery, (2) modeling and implementing the semi-autonomous surgical task using behavior tree framework, and (3) designing an experimental simulated ablation task for feasibility study and robot performance analysis.
This paper presents a technique that reaches 3-D shape measurement speed beyond the digital-lightprocessing (DLP) projector's projection speed. In particular, a "solid-state" binary structured pattern is generated with each micro-mirror pixel always being at one status (ON or OFF). By this means, any time segment of projection can represent the whole signal, thus the exposure time can be shorter than the projection time. A sinusoidal fringe pattern is generated by properly defocusing a binary one, and the Fourier fringe analysis means is used for 3-D shape recovery. We have successfully reached 4,000 Hz rate (80 µs exposure time) 3-D shape measurement speed with an off-the-shelf DLP projector.
Abstract:This paper presents a technique that reaches 3-D shape measurement speed beyond the digital-light-processing (DLP) projector's projection speed. In particular, a "solid-state" binary structured pattern is generated with each micro-mirror pixel always being at one status (ON or OFF). By this means, any time segment of projection can represent the whole signal, thus the exposure time can be shorter than the projection time. A sinusoidal fringe pattern is generated by properly defocusing a binary one, and the Fourier fringe analysis means is used for 3-D shape recovery. We have successfully reached 4,000 Hz rate (80 μs exposure time) 3-D shape measurement speed with an off-the-shelf DLP projector. 16. X. Y. Su, W. S. Zhou, G. Von Bally, and D. Vukicevic, "Automated phase-measuring profilometry using defocused projection of a Ronchi grating," Opt. Commun. 94, 561-573 (1992). 17. X. Su and Q. Zhang, "Dynamic 3-D shape measurement method: A review," Opt. Laser Eng. 48, 191-204 (2010).
Abstract. Brain tumor margin removal is challenging because diseased tissue is often visually indistinguishable from healthy tissue. Leaving residual tumor leads to decreased survival, and removing normal tissue causes lifelong neurological deficits. Thus, a surgical robotics system with a high degree of dexterity, accurate navigation, and highly precise resection is an ideal candidate for image-guided removal of fluorescently labeled brain tumor cells. To image, we developed a scanning fiber endoscope (SFE) which acquires concurrent reflectance and fluorescence wide-field images at a high resolution. This miniature flexible endoscope was affixed to the arm of a RAVEN II surgical robot providing programmable motion with feedback control using stereo-pair surveillance cameras. To verify the accuracy of the three-dimensional (3-D) reconstructed surgical field, a multimodal physical-sized model of debulked brain tumor was used to obtain the 3-D locations of residual tumor for robotic path planning to remove fluorescent cells. Such reconstruction is repeated intraoperatively during margin clean-up so the algorithm efficiency and accuracy are important to the robotically assisted surgery. Experimental results indicate that the time for creating this 3-D surface can be reduced to one-third by using known trajectories of a robot arm, and the error from the reconstructed phantom is within 0.67 mm in average compared to the model design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.