Relationships encode the interactions among individual instances, and play a critical role in deep visual scene understanding. Suffering from the high predictability with non-visual information, existing methods tend to fit the statistical bias rather than "learning" to "infer" the relationships from images. To encourage further development in visual relationships, we propose a novel method to automatically mine more valuable relationships by pruning visuallyirrelevant ones. We construct a new scene-graph dataset named Visually-Relevant Relationships Dataset (VrR-VG) based on Visual Genome. Compared with existing datasets, the performance gap between learnable and statistical method is more significant in VrR-VG, and frequency-based analysis does not work anymore. Moreover, we propose to learn a relationship-aware representation by jointly considering instances, attributes and relationships. By applying the representation-aware feature learned on VrR-VG, the performances of image captioning and visual question answering are systematically improved with a large margin, which demonstrates the gain of our dataset and the features embedding schema. VrR-VG is available via
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.