Pedestrian detection is an essential problem of computer vision, which has achieved tremendous success under controllable conditions using visible light imaging sensors in recent years. However, most of them do not consider low-light environments which are very common in real-world applications. In this paper, we propose a novel pedestrian detection algorithm using multi-task learning to address this challenge in low-light environments. Specifically, the proposed multi-task learning method is different from the most commonly used multi-task learning method—the parameter sharing mechanism—in deep learning. We design a novel multi-task learning method with feature-level fusion and a sharing mechanism. The proposed approach contains three parts: an image relighting subnetwork, a pedestrian detection subnetwork, and a feature-level multi-task fusion learning module. The image relighting subnetwork adjusts the low-light image quality for detection, the pedestrian detection subnetwork learns enhanced features for prediction, and the feature-level multi-task fusion learning module fuses and shares features among component networks for boosting image relighting and detection performance simultaneously. Experimental results show that the proposed approach consistently and significantly improves the performance of pedestrian detection on low-light images obtained by visible light imaging sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.