The small brown planthopper (Laodelphax striatellus (Fallén), Hemiptera: Delphacidae), is an important agricultural pest of rice, and neonicotinoid insecticides are commonly used for controlling L. striatellus. However, the sublethal effects of thiamethoxam on L. striatellus remain relatively unknown. In this study, an age-stage life table procedure was used to evaluate the sublethal effects of thiamethoxam on the biological parameters of L. striatellus. Additionally, activities of carboxylesterase, glutathione S-transferase, and cytochrome P450 monooxygenase in the third instar nymphs were analyzed. The results indicated that the survival time of F0 adults and the fecundity of female adults decreased significantly after the third instar nymphs were treated with sublethal concentrations of thiamethoxam (LC15 0.428 mg/liter and LC30 0.820 mg/liter). The developmental duration, adult preoviposition period, total preoviposition period, and mean generation time of the F1 generation increased significantly, whereas the fecundity of the female adults, intrinsic rate of increase (ri), and finite rate of increase (λ) decreased significantly. The oviposition period was significantly shorter for the insects treated with LC30 than for the control insects. Neither sublethal concentrations had significant effects on the adult longevity, net reproduction rate (R0), or gross reproduction rate (GRR) of the F1 generation. The activities of carboxylesterase, glutathione-S-transferase, and cytochrome P450 monooxygenase increased significantly after the thiamethoxam treatments. These results indicate that sublethal concentrations of thiamethoxam can inhibit L. striatellus population growth and enhance detoxification enzyme activities.
Outbreaks of leaf spot disease occurred in Rehmannia glutinosa fields in Henan Province, China, in 2019, with the incidence ranging from 20% to 40%. R. glutinosa plants with diseased leaves were collected, and 25 isolates were obtained. Pathogenicity tests, morphological observations, and phylogenetic analyses were conducted to identify the pathogens, and the biological characteristics and control agents of the pathogens were studied. Five isolates of pathogenic fungi were isolated. Three isolates were identified as Fusarium equiseti, which is a new pathogen causing R. glutinosa leaf disease; the other two isolates were identified as Fusarium acuminatum. The mycelia of F. equiseti grew fastest on Czapek medium, and the optimal temperature and pH were 25 °C and 10.0, respectively. The mycelia of F. equiseti grew from 5 °C t o 35 °C, and the lethal temperature was 55 °C. The optimal carbon and nitrogen sources were soluble starch and peptone, respectively. Eight fungicides had inhibitory effects on the mycelial growth of F. equiseti and F. acuminatum. Prochloraz had higher activities against F. equiseti and F. acuminatum, with EC50 values of 0.139 mg·L−1 and 0.123 mg·L−1, respectively. These results provide useful information that will aid the development of management strategies to control leaf diseases of R. glutinosa caused by F. equiseti and F. acuminatum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.