PurposeConsidering the small sample size and non-linear characteristics of historical energy consumption data from certain provinces in Southwest China, the authors propose a hybrid accumulation operator and a hybrid accumulation grey univariate model as a more accurate and reliable methodology for forecasting energy consumption. This method can provide valuable decision-making support for policy makers involved in energy management and planning.Design/methodology/approachThe hybrid accumulation operator is proposed by linearly combining the fractional-order accumulation operator and the new information priority accumulation. The new operator is then used to build a new grey system model, named the hybrid accumulation grey model (HAGM). An optimization algorithm based on the JAYA optimizer is then designed to solve the non-linear parameters θ, r, and γ of the proposed model. Four different types of curves are used to verify the prediction performance of the model for data series with completely different trends. Finally, the prediction performance of the model is applied to forecast the total energy consumption of Southwest Provinces in China using the real world data sets from 2010 to 2020.FindingsThe proposed HAGM is a general formulation of existing grey system models, including the fractional-order accumulation and new information priority accumulation. Results from the validation cases and real-world cases on forecasting the total energy consumption of Southwest Provinces in China illustrate that the proposed model outperforms the other seven models based on different modelling methods.Research limitations/implicationsThe HAGM is used to forecast the total energy consumption of the Southwest Provinces of China from 2010 to 2020. The results indicate that the HAGM with HA has higher prediction accuracy and broader applicability than the seven comparative models, demonstrating its potential for use in the energy field.Practical implicationsThe HAGM(1,1) is used to predict energy consumption of Southwest Provinces in China with the raw data from 2010 to 2020. The HAGM(1,1) with HA has higher prediction accuracy and wider applicability compared with some existing models, implying its high potential to be used in energy field.Originality/valueTheoretically, this paper presents, for the first time, a hybrid accumulation grey univariate model based on a new hybrid accumulation operator. In terms of application, this work provides a new method for accurate forecasting of the total energy consumption for southwest provinces in China.
Natural gas is one of the main energy resources for electricity generation. Reliable forecasting is vital to make sensible policies. A randomly optimized fractional grey system model is developed in this work to forecast the natural gas consumption in the power sector of the United States. The nonhomogeneous grey model with fractional-order accumulation is introduced along with discussions between other existing grey models. A random search optimization scheme is then introduced to optimize the nonlinear parameter of the grey model. And the complete forecasting scheme is built based on the rolling mechanism. The case study is executed based on the updated data set of natural gas consumption of the power sector in the United States. The comparison of results is analyzed from different step sizes, different grey system models, and benchmark models. They all show that the proposed method has significant advantages over the other existing methods, which indicates the proposed method has high potential in short-term forecasting for natural gas consumption of the power sector in United States.
<abstract><p>Electricity consumption is one of the most important indicators reflecting the industrialization of a country. Supply of electricity power plays an import role in guaranteeing the running of a country. However, with complex circumstances, it is often difficult to make accurate forecasting with limited reliable data sets. In order to take most advantages of the existing grey system model, the ensemble learning is adopted to provide a new stratagy of building forecasting models for electricity supply of China. The nonhomogeneous grey model with different types of accumulation is firstly fitted with multiple setting of acculumation degrees. Then the majority voting is used to select and combine the most accurate and stable models validated by the grid search cross validation. Two numerical validation cases are taken to validate the proposed method in comparison with other well-known models. Results of the real-world case study of forecasting the electricity supply of China indicate that the proposed model outperforms the other 15 exisiting grey models, which illustrates the proposed model can make much more accurate and stable forecasting in such real-world applications.</p></abstract>
Climate warming is a hot topic of common concern all over the world and it has had a significant impact on climate, oceans and human life. The increase in the concentration of carbon dioxide in the atmosphere has become a significant factor in climate warming. In recent years, the concentration of carbon dioxide in the atmosphere has been mostly anthropogenic emissions. Accurate forecasting of carbon dioxide emissions will effectively propose solutions to the problem of global warming and then improve the environment in which we live. In our work, first of all, we use the new information priority accumulation method to optimize the weight of the new information in the prediction. Then we use the numerical integration method to optimize the background value of the grey model to achieve more accurate forecast. Application case results show that our proposed model is superior to other grey models in predicting carbon dioxide emission in India and Bangladesh.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.