High mobility group box 1 (HMGB1) as a novel inflammatory molecule has been shown to be involved in a variety of cell physiological and pathological behaviors including immune response, inflammation and cancer. Evidence suggests that HMGB1 plays a critical role in the development and progression of multiple malignancies. However, the underlying molecular mechanisms for the HMGB1-mediated growth and invasion of gastric cancer have not yet been elucidated. The present study investigated the expression of HMGB1 in gastric adenocarcinoma (GAC) and the mechanisms by which it contributes to tumor growth and invasion. The correlation between HMGB1 expression and clinicopathological characteristics of GAC patients was assessed by immunohistochemical assay through tissue microarray procedures. The RNA and protein expressions of HMGB1 and downstream factors were detected by quantitative PCR and western blot assays; cell proliferation and invasion were determined by MTT, wound-healing and 3D-Matregel assays, subcutaneous SGC-7901 tumor models were established to verify tumor growth in vivo. We demonstrated that, the expression of HMGB1 was significantly increased in the nucleus of GAC tissues compared with that in adjacent non-cancer tissues (88.6 vs.70.5%, P<0.001), and correlated with the metastatic lymph node of GAC (P=0.018). Furthermore, knockdown of HMGB1 by shRNA inhibited cell proliferative activities and invasive potential, and downregulated the expression of NF-κB p65, PCNA and MMP-9 in GAC cells (SGC-7901 and AGS). The tumor volumes in SGC7901 subcutaneous nude mouse models treated with Lv-shHMGB1 was significantly smaller than those of the nonsense sequence group. Taken together, these findings suggest that increased expression of HMGB1 is associated with tumor metastasis of GAC, and knockdown of HMGB1 suppresses growth and invasion of GAC cells through the NF-κB pathway in vitro and in vivo, suggesting that HMGB1 may serve as a potential therapeutic target for GAC.
This study aimed to explore the underlying molecular mechanisms of colorectal cancer (CRC) using bioinformatics analysis. Using GSE4107 datasets downloaded from the Gene Expression Omnibus, the differentially expressed genes (DEGs) were screened by comparing the RNA expression from the colonic mucosa between 12 CRC patients and ten healthy controls using a paired t-test. The Gene Ontology (GO) functional and pathway enrichment analyses of DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) software followed by the construction of a protein–protein interaction (PPI) network. In addition, hub gene identification and GO functional and pathway enrichment analyses of the modules were performed. A total of 612 up- and 639 downregulated genes were identified. The upregulated DEGs were mainly involved in the regulation of cell growth, migration, and the MAPK signaling pathway. The downregulated DEGs were significantly associated with oxidative phosphorylation, Alzheimer’s disease, and Parkinson’s disease. Moreover, FOS, FN1, PPP1CC, and CYP2B6 were selected as hub genes in the PPI networks. Two modules (up-A and up-B) in the upregulated PPI network and three modules (d-A, d-B, and d-C) in the downregulated PPI were identified with the threshold of Molecular Complex Detection (MCODE) Molecular Complex Detection (MCODE) score ≥4 and nodes ≥6. The genes in module up-A were significantly enriched in neuroactive ligand–receptor interactions and the calcium signaling pathway. The genes in module d-A were enriched in four pathways, including oxidative phosphorylation and Parkinson’s disease. DEGs, such as FOS, FN1, PPP1CC, and CYP2B6, may be used as potential targets for CRC diagnosis and treatment.
Supplemental Digital Content is available in the text
Herein, we found that salidroside suppressed hypoxia‐inducible factor 1 alpha (HIF‐1α) and lysyl oxidase‐like protein 2 (LOXL2) within human pancreatic cancer BxPC‐3 cells cultured both under normoxia and hypoxia condition. To investigate the effect of salidroside on tumorigenesis of BxPC‐3 cells and whether HIF‐1α and LXCL2 were involved in this process, cells transfected with or without LOXL2 overexpression vector, were treated with 50 μg/mL of salidroside or 50 μM of KC7F2 (a HIF‐1α inhibitor) under hypoxia. Cell viability and invasion were assessed using CCK‐8 and Transwell chamber assay, respectively. Expression of E‐cadherin and matrix metalloproteinase 2/9 (MMP 2/9) was determined, by Western blot analysis, to assess cell mobility at molecular levels. We confirmed that hypoxia increased LOXL2 and induced tumorigenesis of BxPC‐3 cells, as evidenced by promoted cell proliferation and invasion, enhanced MMP2/9 while reduced E‐cadherin. Interestingly, hypoxia‐induced carcinogenesis was significantly retarded by both salidroside and KC7F2, however, enhanced with LOXL2 overexpression. Besides, salidroside and KC7F2 reduced LOXL2, and reversed the tumorigenesis of BxPC‐3 cells induced by LOXL2 overexpression. Given the inhibitory effect of salidroside on HIF‐1α expression, our data suggested that: (1) LOXL2 was the mechanism, whereby salidroside and KC7F2 showed inhibitory effect on cancer progression of BxPC‐3 cells; (2) salidroside exerted its anticancer effect, most likely, by a HIF‐1α/LOXL2 pathway. In conclusion, salidroside was a novel therapeutic drug in pancreatic cancer, and downregulation of HIF‐1α and LXCL2 was the underlying mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.