BackgroundAnimals living at high altitude must adapt to environments with hypoxia and low temperatures, but relatively little is known about underlying genetic changes. Toad-headed lizards of the genus Phrynocephalus cover a broad altitudinal gradient of over 4000 m and are useful models for studies of such adaptive responses. In one of the first studies to have considered selection on mitochondrial protein-coding regions in an ectothermic group distributed over such a wide range of environments, we analysed nineteen complete mitochondrial genomes from all Chinese Phrynocephalus (including eight genomes sequenced for the first time). Initial analyses used site and branch-site model (program: PAML) approaches to examine nonsynonymous: synonymous substitution rates across the mtDNA tree.ResultsTen positively selected sites were discovered, nine of which corresponded to subunits ND2, ND3, ND4, ND5, and ND6 within the respiratory chain enzyme mitochondrial Complex I (NADH Coenzyme Q oxidoreductase). Four of these sites showed evidence of general long-term selection across the group while the remainder showed evidence of episodic selection across different branches of the tree. Some of these branches corresponded to increases in altitude and/or latitude. Analyses of physicochemical changes in protein structures revealed that residue changes at sites that were under selection corresponded to major functional differences. Analyses of coevolution point to coevolution of selected sites within the ND4 subunit, with key sites associated with proton translocation across the mitochondrial membrane.ConclusionsOur results identify mitochondrial Complex I as a target for environment-mediated selection in this group of lizards, a complex that frequently appears to be under selection in other organisms. This makes these lizards good candidates for more detailed future studies of molecular evolution.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-4569-1) contains supplementary material, which is available to authorized users.
Diversity in animal coloration is generally associated with adaptation to their living habitats, ranging from territorial display and sexual selection to predation or predation avoidance, and thermoregulation. However, the mechanism underlying color variation in toad‐headed Phrynocephalus lizards remains poorly understood. In this study, we investigated the population color variation of Phrynocephalus versicolor. We found that lizards distributed in dark substrate have darker dorsal coloration (melanic lizards) than populations living in light substrates. This characteristic may improve their camouflage effectiveness. A reciprocal substrate translocation experiment was conducted to clarify the potential role of morphological adaptation and physiological plasticity of this variation. Spectrometry technology and digital photography were used to quantify the color variation of the above‐mentioned melanic and nonmelanic P. versicolor populations and their native substrate. Additionally, substrate color preference in both populations was investigated with choice experiments. Our results indicate that the melanic and nonmelanic populations with remarkable habitat color difference were significantly different on measured reflectance, luminance, and RGB values. Twenty‐four hours, 30 days, and 60 days of substrate translocation treatment had little effects on dorsal color change. We also found that melanic lizards choose to live in dark substrate, while nonmelanic lizards have no preference for substrate color. In conclusion, our results support that the dorsal coloration of P. versicolor, associated with substrate color, is likely a morphological adaptation rather than phenotypic plasticity.
Identification of the role of the MC1R gene has provided major insights into variation in skin pigmentation in several organisms, including humans, but the evolutionary genetics of this variation is less well-established. Variation in this gene and its relationship with degree of melanism was analyzed in one of the world’s highest-elevation lizards, Phrynocephalus theobaldi from the Qinghai-Tibetan Plateau. Individuals from the low-elevation group were shown to have darker dorsal pigmentation than individuals from a high-elevation group. The existence of climatic variation across these elevations was quantified, with lower elevations exhibiting higher air pressure, temperatures and humidity, but less wind and insolation. Analysis of the MC1R gene in 214 individuals revealed amino acid differences at five sites between intraspecific sister lineages from different elevations, with two sites showing distinct fixed residues at low elevations. Three of the four SNPs that underpinned these amino acid differences were highly-significant outliers, relative to the generalized MC1R population structuring, suggestive of selection. Transfection of cells with an MC1R allele from a lighter high-elevation population caused a 43% reduction in agonist-induced cAMP accumulation, and hence lowered melanin synthesis, relative to transfection with an allele from a darker low elevation population. The high-elevation allele led to less efficient integration of the MC1R protein into melanocyte membranes. Our study identifies variation in the degree of melanism that can be explained by four or fewer MC1R substitutions. We establish a functional link between these substitutions and melanin synthesis and demonstrate elevation-associated shifts in their frequencies.
Animals living in extremely high elevations have to adapt to low temperatures and low oxygen availability (hypoxia), but the underlying genetic mechanisms associated with these adaptations are still unclear. The mitochondrial respiratory chain can provide over 95% of the ATP in animal cells, and its efficiency is influenced by temperature and oxygen availability. Therefore, the respiratory chain complexes could be important molecular targets for positive selection associated with respiratory adaptation in high altitude environments. Here, we investigated positive selection in five respiratory chain complexes and their assembly factors by analyzing sequences of 106 genes obtained through RNA-seq of all 15 Chinese Phrynocephalus lizard species, which are distributed from lowlands to the Tibetan plateau (average elevation above 4500m). Our results indicate that evidence of positive selection on respiratory chain complex genes is not significantly different from assembly factors, and we found no difference in selective pressures among the five complexes. We specifically looked for positive selection in lineages where changes in habitat elevation happened. The group of lineages evolving from low to high altitude show stronger signals of positive selection than lineages evolving from high to low elevations. Lineages evolving from low to high elevation also have more shared codons under positive selection, though the changes are not equivalent at the amino acid level. This study advances our understanding of the genetic basis of animal respiratory metabolism evolution in extreme high environments, and provides candidate genes for further confirmation with functional analyses.
The complete mitochondrial genome was sequenced from the toad-headed lizard, Phrynocephalus vlangalii vlangalii. The overall length of mitogenome is 16,319 bp, including 22 tRNA, 13 protein coding genes, 2 rRNA genes, and 2 control regions. The gene order and content were same with the published congeneric mitogenomes, besides the small portion between tRNA-Pro and tRNA-Phe .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.