p97 is a hexameric AAA+ adenosine triphosphatase (ATPase) that is an attractive target for cancer drug development. We report cryo–electron microscopy (cryo-EM) structures for adenosine diphosphate (ADP)–bound, full-length, hexameric wild-type p97 in the presence and absence of an allosteric inhibitor at resolutions of 2.3 and 2.4 angstroms, respectively. We also report cryo-EM structures (at resolutions of ~3.3, 3.2, and 3.3 angstroms, respectively) for three distinct, coexisting functional states of p97 with occupancies of zero, one, or two molecules of adenosine 5′-O-(3-thiotriphosphate) (ATPγS) per protomer. A large corkscrew-like change in molecular architecture, coupled with upward displacement of the N-terminal domain, is observed only when ATPγS is bound to both the D1 and D2 domains of the protomer. These cryo-EM structures establish the sequence of nucleotide-driven structural changes in p97 at atomic resolution. They also enable elucidation of the binding mode of an allosteric small-molecule inhibitor to p97 and illustrate how inhibitor binding at the interface between the D1 and D2 domains prevents propagation of the conformational changes necessary for p97 function.
SUMMARYNitrate (NO À 3 ) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS-box transcription factor, is a major component in the NO À 3 -signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR1 in rice. Here, we show that miR444a plays multiple roles in the rice NO À 3 -signaling pathway -not only in root development, but also involving nitrate accumulation and even P i -starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate-dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen-limitating conditions. Intriguingly, we found that P i starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered P i -starvation-induced root architecture and enhanced P i accumulation and expression of three P i transporter genes. We further provide evidence that miR444a is involved in the interaction between the NO À 3 -signaling and P i -signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice NO À 3 -signaling pathway in nitrate-dependent root growth, nitrate accumulation and phosphate-starvation responses.
Plant RNA-DEPENDENT RNA POLYMERASE1 (RDR1) is a key component of the antiviral RNA-silencing pathway, contributing to the biogenesis of virus-derived small interfering RNAs. This enzyme also is responsible for producing virusactivated endogenous small interfering RNAs to stimulate the broad-spectrum antiviral activity through silencing host genes. The expression of RDR1 orthologs in various plants is usually induced by virus infection. However, the molecular mechanisms of activation of RDR1 expression in response to virus infection remain unknown. Here, we show that a monocot-specific microRNA, miR444, is a key factor in relaying the antiviral signaling from virus infection to OsRDR1 expression. The expression of miR444 is enhanced by infection with Rice stripe virus (RSV), and overexpression of miR444 improves rice (Oryza sativa) resistance against RSV infection accompanied by the up-regulation of OsRDR1 expression. We further show that three miR444 targets, the MIKC C -type MADS box proteins OsMADS23, OsMADS27a, and OsMADS57, form homodimers and heterodimers between them to repress the expression of OsRDR1 by directly binding to the CArG motifs of its promoter. Consequently, an increased level of miR444 diminishes the repressive roles of OsMADS23, OsMADS27a, and OsMADS57 on OsRDR1 transcription, thus activating the OsRDR1-dependent antiviral RNA-silencing pathway. We also show that overexpression of miR444-resistant OsMADS57 reduced OsRDR1 expression and rice resistance against RSV infection, and knockout of OsRDR1 reduced rice resistance against RSV infection. In conclusion, our results reveal a molecular cascade in the rice antiviral pathway in which miR444 and its MADS box targets directly control OsRDR1 transcription.RNA silencing mediated by regulatory small RNAs (microRNAs [miRNAs] and small interfering RNAs [siRNAs]) negatively regulates gene expression at the posttranscriptional level or at the transcriptional level in eukaryotic organisms. Besides small RNAs, plant RNA-silencing pathways incorporate several kinds of core protein components, such as DICER-LIKE (DCL) RNase III endonucleases, which process long doublestranded RNA (dsRNA) into small RNA duplexes; ARGONAUTEs (AGOs), the major effector of the RNA-induced silencing complexes, which bind to small RNAs for silencing target RNAs; and RNA-dependent RNA polymerases (RDRs), which are required for copying single-stranded RNAs into dsRNAs for downstream processing by DCLs. Multiple DCLs, AGOs, and RDRs have evolved in plants and thus form an array of RNA-silencing pathways (Axtell, 2013;Martínez de Alba et al., 2013;Bologna and Voinnet, 2014). Among them, the antiviral RNA-silencing pathway is the earliest described and most extensively studied. It is well known that the antiviral silencing pathway directly targets viral RNAs. Briefly, as in Arabidopsis (Arabidopsis thaliana), the stem-loop structures and dsRNA replication intermediates of viral RNAs are recognized and cleaved by DCLs (DCL4 and DCL2) to produce primary virus-derived small interferi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.