Background: The identification of aortic dissection (AD) at baseline plays a crucial role in clinical practice. Non-contrast CT scans are widely available, convenient, and easy to perform. However, the detection of AD on non-contrast CT scans by radiologists currently lacks sensitivity and is suboptimal.Methods: A total of 452 patients who underwent aortic CT angiography (CTA) were enrolled retrospectively from two medical centers in China to form the internal cohort (341 patients, 139 patients with AD, 202 patients with non-AD) and the external testing cohort (111 patients, 46 patients with AD, 65 patients with non-AD). The internal cohort was divided into the training cohort (n = 238), validation cohort (n = 35), and internal testing cohort (n = 68). Morphological characteristics were extracted from the aortic segmentation. A deep-integrated model based on the Gaussian Naive Bayes algorithm was built to differentiate AD from non-AD, using the combination of the three-dimensional (3D) deep-learning model score and morphological characteristics. The areas under the receiver operating characteristic curve (AUCs), accuracy, sensitivity, and specificity were used to evaluate the model performance. The proposed model was also compared with the subjective assessment of radiologists.Results: After the combination of all the morphological characteristics, our proposed deep-integrated model significantly outperformed the 3D deep-learning model (AUC: 0.948 vs. 0.803 in the internal testing cohort and 0.969 vs. 0.814 in the external testing cohort, both p < 0.05). The accuracy, sensitivity, and specificity of our model reached 0.897, 0.862, and 0.923 in the internal testing cohort and 0.730, 0.978, and 0.554 in the external testing cohort, respectively. The accuracy for AD detection showed no significant difference between our model and the radiologists (p > 0.05).Conclusion: The proposed model presented good performance for AD detection on non-contrast CT scans; thus, early diagnosis and prompt treatment would be available.
Objectives: The objective of this study was to explore the diagnostic value of deep learning-based image reconstruction (DLR) and hybrid iterative reconstruction (HIR) for calcification-related obstructive coronary artery disease (CAD) evaluation by using coronary CT angiography (CCTA) images and subtraction CCTA images.Methods: Forty-two consecutive patients with known or suspected coronary artery disease who underwent coronary CTA on a 320-row CT scanner and subsequent invasive coronary angiography (ICA), which was used as the reference standard, were enrolled. The DLR and HIR images were reconstructed as CTADLR and CTAHIR, and, based on which, the corresponding subtraction CCTA images were established as CTAsDLR and CTAsHIR, respectively. Qualitative images quality comparison was performed by using a Likert 4 stage score, and quantitative images quality parameters, including image noise, signal-to-noise ratio, and contrast-to-noise ratio were calculated. Diagnostic performance on the lesion level was assessed and compared among the four CCTA approaches (CTADLR, CTAHIR, CTAsDLR, and CTAsHIR).Results: There were 166 lesions of 86 vessels in 42 patients (32 men and 10 women; 62.9 ± 9.3 years) finally enrolled for analysis. The qualitative and quantitative image qualities of CTAsDLR and CTADLR were superior to those of CTAsHIR and CTAHIR, respectively. The diagnostic accuracies of CTAsDLR, CTADLR, CTAsHIR, and CTAHIR to identify calcification-related obstructive diameter stenosis were 83.73%, 69.28%, 75.30%, and 65.66%, respectively. The false-positive rates of CTAsDLR, CTADLR, CTAsHIR, and CTAHIR for luminal diameter stenosis ≥50% were 15%, 31%, 24%, and 34%, respectively. The sensitivity and the specificity to identify ≥50% luminal diameter stenosis was 90.91% and 83.23% for CTAsDLR.Conclusion: Our study showed that deep learning–based image reconstruction could improve the image quality of CCTA images and diagnostic performance for calcification-related obstructive CAD, especially when combined with subtraction technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.