It is hard to directly deploy deep learning models on today’s smartphones due to the substantial computational costs introduced by millions of parameters. To compress the model, we develop an ℓ0-based sparse group lasso model called MobilePrune which can generate extremely compact neural network models for both desktop and mobile platforms. We adopt group lasso penalty to enforce sparsity at the group level to benefit General Matrix Multiply (GEMM) and develop the very first algorithm that can optimize the ℓ0 norm in an exact manner and achieve the global convergence guarantee in the deep learning context. MobilePrune also allows complicated group structures to be applied on the group penalty (i.e., trees and overlapping groups) to suit DNN models with more complex architectures. Empirically, we observe the substantial reduction of compression ratio and computational costs for various popular deep learning models on multiple benchmark datasets compared to the state-of-the-art methods. More importantly, the compression models are deployed on the android system to confirm that our approach is able to achieve less response delay and battery consumption on mobile phones.
In this paper, we propose AirSign, a novel user authentication technology to provide users with more convenient, intuitive, and secure ways of interacting with smartphones in daily settings. AirSign leverages both acoustic and motion sensors for user authentication by signing signatures in the air through smartphones without requiring any special hardware. This technology actively transmits inaudible acoustic signals from the earpiece speaker, receives echoes back through both built-in microphones to “illuminate” signature and hand geometry, and authenticates users according to the unique features extracted from echoes and motion sensors. To evaluate our system, we collected registered, genuine, and forged signatures from 30 participants, and by applying AirSign on the above dataset, we were able to successfully distinguish between genuine and forged signatures with a 97.1% F-score while requesting only seven signatures during the registration phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.