Abstract:In this work we will introduce the asymptotic method (ASYM) of identification and provide two case studies. The ASYM was developed for multivariable process identification for model based control. The method calculates time domain parametric models using frequency domain criterion. Fundamental problems, such as test signal design for control, model order/structure selection, parameter estimation and model error quantification, are solved in a systematic manner. The method can supply not only input/output model and unmeasured disturbance model which are asymptotic maximum likelihood estimates, but also the upper bound matrix for the model errors that can be used for model validation and robustness analysis. To demonstrate the use of the method for model predictive control (MPC), the identification of a Shell benchmark process (a simulated distillation column) and an industrial application to a crude unit atmospheric tower will be presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.