As breast cancer cells develop secondary resistance to estrogen deprivation therapy, they increase their utilization of non-genomic signaling pathways. Our prior work demonstrated that estradiol causes an association of ERα with Shc, Src and the IGF-1-R. In cells developing resistance to estrogen deprivation (surrogate for aromatase inhibition) and to the anti-estrogens tamoxifen, 4-OHtamoxifen, and fulvestrant, an increased association of ERα with c-Src and the EGF-R occurs. At the same time, there is a translocation of ERα out of the nucleus and into the cytoplasm and cell membrane. Blockade of cSrc with the Src kinase inhibitor, PP-2 causes relocation of ERα into the nucleus. While these changes are not identical in response to each anti-estrogen, ERα binding to the EGF-R is increased in response to 4-OH-Tamoxifen when compared with tamoxifen. The changes in EGF-R interactions with ERα impart an enhanced sensitivity of tamoxifen resistant cells to the inhibitory properties of the specific EGF-R tyrosine kinase inhibitor, AG 1478. However, with long term exposure of tamoxifen-resistant cells to AG 1478, the cells begin to re-grow but can now be inhibited by the IGF-R tyrosine kinase inhibitor, AG 1024. These data suggest that the IGF-R system becomes the predominant signaling mechanism as an adaptive response to the EGF-R inhibitor. Taken together, this information suggests that both the EGF-R and IGF-R pathways can mediate ERα signaling.To further examine the effects of fulvestrant on ERα function, we examined the acute effects of fulvestrant, on non-genomic functionality. Fulvestrant enhanced ERα association with the membrane IGF-1 receptor (IGF-1R). Using siRNA or expression vectors to knock-down or knock-in selective proteins, we further demonstrated that the ERα/IGF-1R association is Src-dependent. Fulvestrant rapidly induced IGF-1R and MAPK phosphorylation. The Src inhibitor PP2 and IGF-1R inhibitor AG1024 greatly blocked fulvestrant-induced ERα/IGF-1R interaction leading to a further depletion of total cellular ERα induced by fulvestrant and further enhanced fulvestrant-induced cell growth arrest. More dramatic was the translocation of ERα to the plasma membrane in combination with the IGF-1-R as shown by confocal microscopy. Taken in aggregate, these studies suggest that secondary resistance to hormonal therapy results in usage of both IGF-R and EGF-R for non-genomic signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.