Terahertz time-domain spectroscopy (THz-TDS) technology has great application prospects for the detection of biological macromolecules, whereas microfluidic technology uses micro-channel networks to manipulate liquids, which can reduce the influence of hydrogen bonds in liquids on THz waves. The combination of these two technologies makes the detection of THz waves in aqueous solutions of biomolecules more accurate and efficient. In this study, microfluidic technology and THz-TDS technology were applied to study the THz transmission characteristics of xanthan gum, providing three feasible methods for the detection of xanthan gum colloids.
Terahertz radiation enables nondestructive testing of biological samples, but is challenged by its high absorption in aqueous samples, so microfluidic technology is introduced to reduce the absorption. In this study, we designed a special temperature control device and an electric field device for a microfluidic chip to examine the terahertz spectral characteristics of konjac gum at different temperatures, concentrations, and electric field exposure time using the terahertz time domain spectroscopy system. Results demonstrate that higher concentrations of konjac gum lead to higher transmission intensity of terahertz radiation and a lower absorption of the radiation. Higher temperatures of the konjac gum lead to lower terahertz transmittance, and longer exposure time in the electric field leads to a lower transmittance of terahertz radiation and its higher absorption by the konjac gum. At the same time, we explain this phenomenon from the perspective of micromolecules. This study provides technical guidance for the detection of konjac gum by terahertz technology.
Multiwalled carbon nanotubes (MWCNTs) have excellent electronic, mechanical, and structural characteristics; however, their poor dispersion structure and large aggregates severely inhibit their function. A stable MWCNT dispersion in an aqueous solvent has been realized via ultrasonic dispersion and surfactant modification, providing a reference for improving MWCNT dispersion in various materials and solvents. In this study, a cyclic olefin copolymer with high transmittance to terahertz (THz) waves is used to prepare microfluidic chips. Then, the microfluidic and THz technologies are combined to study the THz absorption characteristics of MWCNT aqueous dispersion under different electric field (EF) intensities, magnetic field (MF) intensities, and MF action time. The results show that the THz spectral intensity of MWCNT aqueous dispersion decreases and the absorption coefficient increases with the increase of EF intensity, MF intensity, and MF action time. This phenomenon is explained from a microscopic perspective. The combination of microfluidic and THz technologies provides technical support for studying the characteristics of MWCNT aqueous dispersion and lays a foundation for elucidating the molecular microstructure of MWCNT aqueous dispersion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.