With the widespread use of genetic diagnostic technologies, many novel mutations have been identified in hereditary spherocytosis (HS)-related genes, including SPTA1, SPTB, ANK1, SLC4A1, and EPB42. However, mutations in HS-related genes are dispersed and nonspecific in the diagnosis of some HS patients, indicating significant heterogeneity in the molecular deficiency of HS. It is necessary to provide the molecular and genetic characteristics of these 5 genes for clinicians to examine HS. Here, we reviewed the recent proposed molecular genetic mechanisms of HS.
BackgroundThere is currently no single index for the diagnostic screening of hereditary spherocytosis (HS). However, hematology analyzers are widely used in hospital laboratories because of their highly automated performance and quality control procedure, and detection of some blood cell parameters may be useful for the early screening of HS.MethodsWe investigated the values of blood cell parameters for the screening and differential diagnosis of HS. We performed a descriptive study of 482 samples (67 cases of HS, 59 cases of G6PD deficiency, 57 cases of AIHA, 199 cases of thalassemia, and 100 cases of healthy controls) that were run on Beckman Coulter LH780 Hematology Analyzer.ResultsHS was characterized by increased MCHC, decreased MRV, MSCV‐MCV < 0, and increased Ret with no concomitant increase in IRF. The areas under the ROC curves were MSCV‐MCV (0.97; 95% CI 0.95‐1.0) > MRV (0.94; 95% CI 0.91‐0.97) > MCHC (0.92; 95% CI 0.88‐0.97) > Ret/IRF (0.77; 95% CI 0.7‐0.84). MSCV‐MCV ≤ 0.6 fl was valuable parameter for the diagnostic screening of HS, with a sensitivity of 95.5% and specificity of 94.9%.ConclusionThese indices have high reference values for differentiating HS from thalassemia, AIHA, and G6PD deficiency.
This study assessed the value of mean reticulocyte volume (MRV) for differential diagnosis of hereditary spherocytosis (HS) so as to develop conventional and new specific screen indexes. Subjects in this study were divided into three groups: 53 cases in HS group, 217 cases in hemolytic anemia control group (109 cases of thalassemia (THAL), 56 cases of glucose-6-phosphate dehydrogenase G6PD deficiency anemia, and 52 cases of autoimmune hemolytic anemia (AIHA)), and 100 cases in healthy control group. We analyzed erythrocyte and reticulocyte parameters including MRV, mean sphered corpuscular volume, mean corpuscular hemoglobin concentration, and immature reticulocyte fraction. Results demonstrated that MRV was significantly lower in the HS group but significantly higher in the AIHA and G6PD deficiency anemia groups than that in the healthy control group (P = 0.000). MRV was not significantly different between the AIHA and G6PD deficiency anemia groups (P = 0.977) and between the healthy control and THAL groups (P = 0.168). The area under the ROC curve of MRV for diagnosis of HS was 0.942, with a standard error of 0.019, 95% confidence interval of 0.905-0.979, and optimal critical diagnosis point of 95.77 fL. When the MRV was ≤95.77 fL, the sensitivity and specificity for diagnosis of HS were 86.80% and 91.20%, respectively. Therefore, MRV is a general and specific new index for screening HS and important for differential diagnosis of different types of hemolytic anemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.