Current methane gas leak detection technology uses infrared imaging in the medium wave (MW) or long wave (LW) bands, essentially applying cooled infrared detectors. In this study, a simplified three-layer radiative transfer model is adopted based on methane gas detection theory, considering background radiation, atmospheric infrared absorption, gas absorption, and emission characteristics to analyze the contrast of methane gas thermography in different infrared bands. The analysis results suggest that under certain conditions, the 6.6-8.6 μm LW band provides higher contrast compared to the 3-5 μm MW band. The optimal imaging wavelength band is selected according to imaging contrast advantages and disadvantages, and infrared optical systems and infrared filters are designed and optimized. We build a passive methane gas leak detection system based on uncooled infrared focal plane array detectors. By collecting gas images under different conditions, the imaging detection capabilities for methane gas leaks in the MW and LW bands in a laboratory environment are compared. Finally, the developing trends in methane gas detection technology are analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.