As one of the automated guided vehicle (AGV) positioning methods, the LiDAR positioning method, based on artificial landmarks, has been widely used in warehousing logistics industries in recent years. However, the traditional LiDAR positioning method based on artificial landmarks mainly depends on the three-point positioning method, the performance of which is limited due to landmarks’ layout and detection requirements. This paper proposes a LiDAR positioning algorithm based on iterative closest point (ICP) and artificial landmarks assistance. It provides improvements based on the traditional ICP algorithm. The result of positioning provided by the landmarks is used as the initial iteration ICP value. The combination of the ICP algorithm and landmarks enables the positioning algorithm to maintain a certain positioning precision when landmark detection is disturbed. By comparing the proposed algorithm with the positioning scheme developed by SICK in Germany, we prove that the combination of the ICP algorithm and landmarks can effectively improve the robustness under the premise of ensuring precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.