Approximately half of the world's 500,000 new oesophageal squamous-cell carcinoma (ESCC) cases each year occur in China. Here, we show whole-genome sequencing of DNA and RNA in 94 Chinese individuals with ESCC. We identify six mutational signatures (E1–E6), and Signature E4 is unique in ESCC linked to alcohol intake and genetic variants in alcohol-metabolizing enzymes. We discover significantly recurrent mutations in 20 protein-coding genes, 4 long non-coding RNAs and 10 untranslational regions. Functional analyses show six genes that have recurrent copy-number variants in three squamous-cell carcinomas (oesophageal, head and neck and lung) significantly promote cancer cell proliferation, migration and invasion. The most frequently affected genes by structural variation are LRP1B and TTC28. The aberrant cell cycle and PI3K-AKT pathways seem critical in ESCC. These results establish a comprehensive genomic landscape of ESCC and provide potential targets for precision treatment and prevention of the cancer.
Whole-genome sequencing data allow detection of copy number variation (CNV) at high resolution. However, estimation based on read coverage along the genome suffers from bias due to GC content and other factors. Here, we develop an algorithm called BIC-seq2 that combines normalization of the data at the nucleotide level and Bayesian information criterion-based segmentation to detect both somatic and germline CNVs accurately. Analysis of simulation data showed that this method outperforms existing methods. We apply this algorithm to low coverage whole-genome sequencing data from peripheral blood of nearly a thousand patients across eleven cancer types in The Cancer Genome Atlas (TCGA) to identify cancer-predisposing CNV regions. We confirm known regions and discover new ones including those covering KMT2C, GOLPH3, ERBB2 and PLAG1. Analysis of colorectal cancer genomes in particular reveals novel recurrent CNVs including deletions at two chromatin-remodeling genes RERE and NPM2. This method will be useful to many researchers interested in profiling CNVs from whole-genome sequencing data.
By analyzing genetic alterations in different tumor regions of 10 HCCs, we observed extensive intratumor heterogeneity. Our patient-derived cell line-based model, integrating genetic and pharmacologic data from multiregional cancer samples, provides a platform to elucidate how intratumor heterogeneity affects sensitivity to different therapeutic agents.
Several patient-derived tumor models emerged recently as robust preclinical drug-testing platforms. However, their potential to guide clinical therapy remained unclear. Here, we report a model called patient-derived tumor-like cell clusters (PTCs). PTCs result from the self-assembly and proliferation of primary epithelial, fibroblast, and immune cells, which structurally and functionally recapitulate original tumors. PTCs enabled us to accomplish personalized drug testing within 2 weeks after obtaining the tumor samples. The defined culture conditions and drug concentrations in the PTC model facilitate its clinical application in precision oncology. PTC tests of 59 patients with gastric, colorectal, or breast cancers revealed an overall accuracy of 93% in predicting their clinical outcomes. We implemented PTC to guide chemotherapy selection for a patient with mucinous rectal adenocarcinoma who experienced recurrence with metastases after conventional therapy. After three cycles of a nonconventional therapy identified by the PTC, the patient showed a positive response. These findings need to be validated in larger clinical trials, but they suggest that the PTC model could be prospectively implemented in clinical decision-making for therapy selection.
Histologic grade is one of the most important microscopic features used to predict the prognosis of invasive breast cancer and may serve as a marker for studying cancer driving genomic abnormalities in vivo. We analyzed whole genome sequencing data from 680 cases of TCGA invasive ductal carcinomas of the breast and correlated them to corresponding pathology information. Ten genetic abnormalities were found to be statistically associated with histologic grade, including three most prevalent cancer driver events, TP53 and PIK3CA mutations and MYC amplification. A distinct genetic interaction among these genomic abnormalities was revealed as measured by the histologic grading score. While TP53 mutation and MYC amplification were synergistic in promoting tumor progression, PIK3CA mutation was found to have alleviated the oncogenic effect of either the TP53 mutation or MYC amplification, and was associated with a significant reduction in mitotic activity in TP53 mutated and/or MYC amplified breast cancer. Furthermore, we discovered that different types of genetic abnormalities (mutation versus amplification) within the same cancer driver gene (PIK3CA or GATA3) were associated with opposite histologic changes in invasive breast cancer. In conclusion, our study suggests that histologic grade may serve as a biomarker to define cancer driving genetic events in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.