The floating-point representation provides widely-used data types (such as “float” and “double”) for modern numerical software. Numerical errors are inherent due to floating-point’s approximate nature, and pose an important, well-known challenge. It is nontrivial to fix/repair numerical code to reduce numerical errors — it requires either
numerical expertise
(for manual fixing) or high-precision
oracles
(for automatic repair); both are difficult requirements. To tackle this challenge, this paper introduces a
principled dynamic approach
that is
fully automated
and
oracle-free
for effectively repairing floating-point errors. The key of our approach is the novel notion of
micro-structure
that characterizes structural patterns of floating-point errors. We leverage micro-structures’ statistical information on floating-point errors to effectively guide repair synthesis and validation. Compared with existing state-of-the-art repair approaches, our work is fully automatic and has the distinctive benefit of not relying on the difficult to obtain high-precision oracles. Evaluation results on 36 commonly-used numerical programs show that our approach is highly efficient and effective: (1) it is able to synthesize repairs instantaneously, and (2) versus the original programs, the repaired programs have orders of magnitude smaller floating-point errors, while having faster runtime performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.