The incidence and prevalence of intestinal parasites in children is most likely due to lack of natural or acquired resistance and differences in behavior and habits closely related to environmental and socioeconomic determinants. The most important protozoa that parasitize humans are Giardia, Entamoeba, Blastocystis, and Cryptosporidium. These parasites present wide intraspecific genetic diversity and subsequently classified into assemblages and subtypes. The Amazon basin is the largest in the world and is the fifth freshwater reserve on the planet. Contradictorily, people living in these areas (Indigenous populations) have poor quality of life, which favors the infection of diseases of fecal-oral transmission. The aim of this work was to unravel the molecular epidemiology of Giardia, Blastocystis and Cryptosporidium across four communities (Puerto Nariño, San Juan del Soco, Villa Andrea and Nuevo Paraíso). We obtained 284 fecal samples from children under 15 years old that were analyzed by direct microscopy (261 samples) and Real Time PCR (qPCR) (284 samples). The positive samples for these protozoa were further characterized by several molecular markers to depict assemblages and subtypes. We observed a frequency of Giardia infection by microscopy of 23.7% (62 samples) and by qPCR of 64.8% (184 samples); for Blastocystis by microscopy of 35.2% (92 samples) and by qPCR of 88.7% (252 samples) and for Cryptosporidium only 1.9% (5 samples) were positive by microscopy and qPCR 1.8% (5 samples). Regarding the Giardia assemblages, using the glutamate dehydrogenase (gdh) marker we observed AI, BIII and BIV assemblages and when using triose phosphate isomerase (tpi) we observed assemblages AI, AII, BIII and BIV. In contrast, Blastocystis STs detected were 1, 2, 3, 4, and 6. Lastly, the species C. viatorum, C. hominis (with the subtypes IdA19 and IaA12R8) and C. parvum (with the subtype IIcA5G3c) were identified. We observed a high profile of zoonotic transmission regarding the Giardia assemblages and Blastocystis STs/alleles. Also, we highlight the elevated frequency of infection by these two protozoans suggesting an active transmission in the area. Our findings reinforces the need to deploy better epidemiological surveillance systems for enteric pathogens in the area.
Wireless cellular networks have many parameters that are normally tuned upon deployment and re-tuned as the network changes. Many operational parameters affect reference signal received power (RSRP), reference signal received quality (RSRQ), signal-to-interference-plus-noise-ratio (SINR), and, ultimately, throughput. In this paper, we develop and compare two approaches for maximizing coverage and minimizing interference by jointly optimizing the transmit power and downtilt (elevation tilt) settings across sectors. To evaluate different parameter configurations offline, we construct a realistic simulation model that captures geographic correlations. Using this model, we evaluate two optimization methods: deep deterministic policy gradient (DDPG), a reinforcement learning (RL) algorithm, and multiobjective Bayesian optimization (BO). Our simulations show that both approaches significantly outperform random search and converge to comparable Pareto frontiers, but that BO converges with two orders of magnitude fewer evaluations than DDPG. Our results suggest that data-driven techniques can effectively self-optimize coverage and capacity in cellular networks.
Hierarchical structure design of transition metal compounds is a promising method for improving the electrochemical properties of supercapacitors. In this work, a 3D electrode is obtained by in situ growing of NiMoO4@NiCo2O4 core–shell nanorods on Ni foam (NF) followed by an annealing process (NF@NiMoO4@NiCo2O4). The hierarchical structure with ordered pores on a surface enables a uniform charge distribution, provides effective electron/ion transfer channels, and maintains structural integrity over long periods of cycling, which collectively results in excellent electrochemical properties with an extraordinary specific capacitance of 1920 F g–1 at 1 A g–1 as well as 91.6% capacitance retention after 10 000 cycles. Furthermore, a flexible solid-state asymmetric supercapacitor fabricated with NF@NiMoO4@NiCo2O4 achieves a superior energy density of 54.5 Wh kg–1 (at 845 W kg–1) and an outstanding cycling stability with 83% capacity retention over 10 000 cycles. The hierarchical 3D electrode design in this work will contribute to the development of high-performance supercapacitors and shows promising prospects in flexible and portable energy storage systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.