A growing body of evidence suggests that gut microbiota could participate in the progression of depression via the microbiota–gut–brain axis. However, the detailed microbial metabolic profile changes in the progression of depression is still not fully elucidated. In this study, a liquid chromatography coupled to mass spectrometry-based untargeted serum high-throughput metabolomics method was first performed to screen for potential biomarkers in a depressive-like state in a chronic unpredictable mild stress (CUMS)-induced mouse model. Our results identified that the bile acid and energy metabolism pathways were significantly affected in CUMS progression. The detailed bile acid profiles were subsequently quantified in the serum, liver, and feces. The results showed that CUMS significantly promoted the deconjugation of conjugated bile acid and secondary bile acid biosynthesis. Furthermore, 16S rRNA gene sequencing revealed that the increased secondary bile acid levels in the feces positively correlated with Ruminococcaceae_UCG-010, Ruminococcus, and Clostridia_UCG-014 abundance. Taken together, our study suggested that changes in family Ruminococcaceae abundance following chronic stress increased biosynthesis of deoxycholic acid (DCA), a unconjugated secondary bile acid in the intestine. Aberrant activation of secondary bile acid biosynthesis pathway thereby increased the hydrophobicity of the bile acid pool, which might, in turn, promoted metabolic disturbances and disease progression in CUMS mice.
Fluoroquinolones are an important class of antimicrobial agents to manage infectious diseases. However, knowledge about how host bile acids are modified by fluoroquinolones is limited. We investigated and compared the impact of fluoroquinolones on circulating bile acid profiles and gut microbiota from in vivo studies. We administered ciprofloxacin (100 mg/kg/day) or moxifloxacin (40 mg/kg/day) orally to male Wistar rats for seven days. Fifteen bile acids (BAs) from the serum and large intestine were quantified by HPLC-MS/MS. The diversity of gut microbiota after ciprofloxacin and moxifloxacin treatment was analyzed using high-throughput, next-generation sequencing technology. The two fluoroquinolone-treated groups had different BA profiles. Ciprofloxacin significantly reduced the hydrophobicity index of the BA pool, reduced secondary BAs, and increased taurine-conjugated primary BAs in both the serum and large intestine as compared with moxifloxacin. Besides, ciprofloxacin treatment altered intestinal microbiota with a remarkable increase in Firmicutes to Bacteroidetes ratio, while moxifloxacin exerted no effect. What we found suggests that different fluoroquinolones have a distinct effect on the host BAs metabolism and intestinal bacteria, and therefore provide guidance on the selection of fluoroquinolones to treat infectious diseases.
Background: Membranous nephropathy (MN) and IgA nephropathy (IgAN) are the most common primary glomerulopathies worldwide. The systemic metabolic changes in the progression of MN and IgAN are not fully understood.
Methods: 87 MN patients, 70 IgAN patients, and 30 healthy controls were enrolled in this study. Untargeted metabolomics was performed to explore the differential metabolites and metabolic pathways in the early stage of MN and IgAN. ROC curve analyses were performed to judge the diagnostic ability of biomarkers.
Results: PCA and OPLS-DA analysis suggested that obvious separation trend was obversed in both MN and IgAN patients from the healthy controls. 155 and 148 metabolites were identified significantly altered in MN and IgAN groups. Of these, 70 metabolites were markedly altered in both disease groups and 6 metabolites showed the opposite tendency, including L-tryptophan, L-kynurenine, gamma-aminobutyric acid (GABA), indoleacetaldehyde, 5-hydroxyindoleacetylglycine, and N-alpha-acetyllysine. The most affected metabolic pathways includes the amino acid metabolic pathways, citrate cycle, pantothenate and CoA biosynthesis, and hormone signaling pathways.
Conclusion: Great metabolic disorders had happened during the progression of MN and IgAN. L-tryptophan, L-kynurenine, gamma-aminobutyric acid (GABA), indoleacetaldehyde, 5-hydroxyindoleacetylglycine, and N-alpha-acetyllysine may show potential as biomarkers for for identification of MN and IgAN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.