Summary
Thermosets play a key role in the modern plastics and rubber industries, comprising ~20% of polymeric materials with a worldwide annual production of ~65 million tons.
1
,
2
The high density of crosslinks that gives thermosets their useful properties (
e.g
., chemical/thermal resistance, and tensile strength) comes at the expense of degradability and recyclability. Here, using the industrial thermoset polydicyclopentadiene (pDCPD) as a model system, we show that when a small number of cleavable bonds are selectively installed within the strands of thermoset plastics, the resulting materials can display the same mechanical properties as the native material, yet they are able to undergo triggered degradation to yield soluble, recyclable products of controlled size and functionality. In contrast, installation of cleavable crosslinks, even at comparably high loadings, does not produce degradable materials. These findings reveal cleavable bond location as a design principle for controlled thermoset degradation. Moreover, a new class of recyclable thermosets poised for rapid deployment is introduced.
Textbooks describe excess protons in liquid water as hydronium (HO) ions, although their true structure remains lively debated. To address this question, we have combined Raman and infrared (IR) multivariate curve resolution spectroscopy with ab initio molecular dynamics and anharmonic vibrational spectroscopic calculations. Our results are used to resolve, for the first time, the vibrational spectra of hydrated protons and counterions and reveal that there is little ion-pairing below 2 M. Moreover, we find that isolated excess protons are strongly IR active and nearly Raman inactive (with vibrational frequencies of ∼1500 ± 500 cm), while flanking water OH vibrations are both IR and Raman active (with higher frequencies of ∼2500 ± 500 cm). The emerging picture is consistent with Georg Zundel's seminal work, as well as recent ultrafast dynamics studies, leading to the conclusion that protons in liquid water are primarily hydrated by two flanking water molecules, with a broad range of proton hydrogen bond lengths and asymmetries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.