The study of sulfur solubility is of great significance to the safe development of sulfur-containing gas reservoirs. However, due to measurement difficulties, experimental research data on sulfur solubility thus far are limited. Under the research background of small samples and poor information, a weighted least-squares support vector machine (WLSSVM)-based machine learning model suitable for a wide temperature and pressure range is proposed to improve the prediction accuracy of sulfur solubility in sour gas. First, we use the comprehensive gray relational analysis method to extract important factors affecting sulfur solubility as the model input parameters. Then, we use the whale optimization algorithm (WOA) and gray wolf optimizer (GWO) intelligence algorithms to find the optimal solution of the penalty factor and kernel coefficient and bring them into three common kernel functions. The optimal kernel function is calculated, and the final WOA-WLSSVM and GWO-WLSSVM models are established. Finally, four evaluation indicators and an outlier diagnostic method are introduced to test the proposed model’s performance. The empirical results show that the WOA-WLSSVM model has better performance and reliability; the average absolute relative deviation is as low as 3.45%, determination coefficient (R 2) is as high as 0.9987, and the prediction accuracy is much higher than that of other models.
Some natural gases are toxic because they contain hydrogen sulfide (H2S). The solubility pattern of elemental sulfur (S) in toxic natural gas needs to be studied for environmental protection and life safety. Some methods (e.g., experiments) may pose safety risks. Measuring sulfur solubility using a machine learning (ML) method is fast and accurate. Considering the limited experimental data on sulfur solubility, this study used consensus nested cross-validation (cnCV) to obtain more information. The global search capability and learning efficiency of random forest (RF) and weighted least squares support vector machine (WLSSVM) models were enhanced via a whale optimization–genetic algorithm (WOA-GA). Hence, the WOA-GA-RF and WOA-GA-WLSSVM models were developed to accurately predict the solubility of sulfur and reveal its variation pattern. WOA-GA-RF outperformed six other similar models (e.g., RF model) and six other published studies (e.g., the model designed by Roberts et al.). Using the generic positional oligomer importance matrix (gPOIM), this study visualized the contribution of variables affecting sulfur solubility. The results show that temperature, pressure, and H2S content all have positive effects on sulfur solubility. Sulfur solubility significantly increases when the H2S content exceeds 10%, and other conditions (temperature, pressure) remain the same.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.