Pansharpening, which fuses the panchromatic (PAN) band with multispectral (MS) bands to obtain an MS image with spatial resolution of the PAN images, has been a popular topic in remote sensing applications in recent years. Although the deep-learning-based pansharpening algorithm has achieved better performance than traditional methods, the fusion extracts insufficient spatial information from a PAN image, producing low-quality pansharpened images. To address this problem, this paper proposes a novel progressive PAN-injected fusion method based on superresolution (SR). The network extracts the detail features of a PAN image by using two-stream PAN input; uses a feature fusion unit (FFU) to gradually inject low-frequency PAN features, with high-frequency PAN features added after subpixel convolution; uses a plain autoencoder to inject the extracted PAN features; and applies a structural similarity index measure (SSIM) loss to focus on the structural quality. Experiments performed on different datasets indicate that the proposed method outperforms several state-of-the-art pansharpening methods in both visual appearance and objective indexes, and the SSIM loss can help improve the pansharpened quality on the original dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.