Dielectric capacitors have the highest charge/discharge speed among all electrical energy devices, but lag behind in energy density. Here we report dielectric ultracapacitors based on ferroelectric films of Ba(Zr0.2,Ti0.8)O3 which display high-energy densities (up to 166 J cm–3) and efficiencies (up to 96%). Different from a typical ferroelectric whose electric polarization is easily saturated, these Ba(Zr0.2,Ti0.8)O3 films display a much delayed saturation of the electric polarization, which increases continuously from nearly zero at remnant in a multipolar state, to a large value under the maximum electric field, leading to drastically improved recyclable energy densities. This is achieved by the creation of an adaptive nano-domain structure in these perovskite films via phase engineering and strain tuning. The lead-free Ba(Zr0.2,Ti0.8)O3 films also show excellent dielectric and energy storage performance over a broad frequency and temperature range. These findings may enable broader applications of dielectric capacitors in energy storage, conditioning, and conversion.
Coherent beam combination of a 1.08 kW fiber amplifier array has been demonstrated for the first time, to our knowledge. In the experiment, nine fiber amplifiers are tiled into a 3×3 array, and the output power of each amplifier is approximately 120 W. A single frequency dithering algorithm is used to compensate the phase noises between the elements, which runs on a signal processor based on field programmable gate array for phase control on the fiber amplifiers. When the phase control system goes into closed loop, the fringe contrast of the far-field intensity pattern is improved to more than 85%, and the residual phase error is less than λ/15.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.