Municipal solid waste incineration (MSWI) has been widely used due to its benefits in reducing waste and recovering energy. However, MSWI fly ash and bottom ash are increasing rapidly, causing harm to human health and the environment. This paper discussed the production process, physical and chemical properties, leaching properties, pretreatment methods, and applications of fly ash and bottom ash. By summarizing the previous literature, it is found that MSWI fly ash and bottom ash have mechanical properties similar to natural aggregate. Many beneficial attempts have been made in cement concrete aggregates, ceramic raw materials, and highway engineering materials. Due to concerns about the leaching of heavy metals in fly ash, its application in highway engineering is limited. The application of bottom ash in asphalt pavement is rare because of the side effect on the performance of asphalt mixture. Considering the solidification effect of cement on heavy metals and the low cost of fly ash and bottom ash, the application in cement-stabilized macadam base has broad application prospects. This is beneficial to reduce the construction cost and promote the process of waste incineration, especially in developing countries.
In this study, n-type MoS2 monolayer flakes are grown through chemical vapor deposition (CVD), and a p-type Cu2O thin film is grown via electrochemical deposition. The crystal structure of the grown MoS2 flakes is analyzed through transmission electron microscopy. The monolayer structure of the MoS2 flakes is verified with Raman spectroscopy, multiphoton excitation microscopy, atomic force microscopy, and photoluminescence (PL) measurements. After the preliminary processing of the grown MoS2 flakes, the sample is then transferred onto a Cu2O thin film to complete a p-n heterogeneous structure. Data are confirmed via scanning electron microscopy, SHG, and Raman mapping measurements. The luminous energy gap between the two materials is examined through PL measurements. Results reveal that the thickness of the single-layer MoS2 film is 0.7 nm. PL mapping shows a micro signal generated at the 627 nm wavelength, which belongs to the B2 excitons of MoS2 and tends to increase gradually when it approaches 670 nm. Finally, the biosensor is used to detect lung cancer cell types in hydroplegia significantly reducing the current busy procedures and longer waiting time for detection. The results suggest that the fabricated sensor is highly sensitive to the change in the photocurrent with the number of each cell, the linear regression of the three cell types is as high as 99%. By measuring the slope of the photocurrent, we can identify the type of cells and the number of cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.