With the deployment of a growing number of smart home IoT devices, privacy leakage has become a growing concern. Prior work on privacy-invasive device localization, classification, and activity identification have proven the existence of various privacy leakage risks in smart home environments. However, they only demonstrate limited threats in real world due to many impractical assumptions, such as having privileged access to the user's home network. In this paper, we identify a new end-to-end attack surface using IoTBeholder, a system that performs device localization, classification, and user activity identification. IoTBeholder can be easily run and replicated on commercial off-the-shelf (COTS) devices such as mobile phones or personal computers, enabling attackers to infer user's habitual behaviors from smart home Wi-Fi traffic alone. We set up a testbed with 23 IoT devices for evaluation in the real world. The result shows that IoTBeholder has good device classification and device activity identification performance. In addition, IoTBeholder can infer the users' habitual behaviors and automation rules with high accuracy and interpretability. It can even accurately predict the users' future actions, highlighting a significant threat to user privacy that IoT vendors and users should highly concern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.