In the past decade, direct C-H arylation of indoles has been developed with high selectivity at the C2 and C3 positions via transition-metal-catalyzed cross-coupling reactions. Here we show that C-H activation can be directed to the C7 position with high selectivity in Pd-catalyzed coupling of indoles with arylboronic acids. The key to this high regioselectivity is the appropriate choice of a phosphinoyl directing group and a pyridine-type ligand in the presence of Pd(OAc)2 catalyst. This previously elusive transformation should provide insight for the design of other cross-couplings as well.
Accessing enantiomerically enriched amines often demands oxidation-state adjustments, protection and deprotection processes, and purification procedures that increase cost and waste, limiting applicability. When diastereomers can be formed, one isomer is attainable. Here, we show that nitriles, largely viewed as insufficiently reactive, can be transformed directly to multifunctional unprotected homoallylic amines by enantioselective addition of a carbon-based nucleophile and diastereodivergent reduction of the resulting ketimine. Successful implementation requires that competing copper-based catalysts be present simultaneously and that the slower-forming and less reactive one engages first. This challenge was addressed by incorporation of a nonproductive side cycle, fueled selectively by inexpensive additives, to delay the function of the more active catalyst. The utility of this approach is highlighted by its application to the efficient preparation of the anticancer agent (+)-tangutorine.
Nitriles are found in many bioactive compounds, and are among the most versatile functional groups in organic chemistry. Despite many notable recent advances, however, there are no approaches that may be used for preparation of di- or trisubstituted alkenyl nitriles. Related approaches which are broad in scope and can deliver the desired products in high stereoisomeric purity are especially scarce. Here, we describe the development of several efficient catalytic cross-metathesis strategies, which provide direct access to a considerable range of
Z
- or
E
-disubstituted cyano-substituted alkenes or their corresponding trisubstituted variants. Depending on the reaction type, a molybdenum-based monoaryloxide pyrrolide (MAP) or chloride (MAC) complex may be the optimal choice. The utility of the approach, enhanced by an easy-to-apply protocol for utilization of substrates bearing an alcohol or a carboxylic acid moiety, is highlighted in the context of applications to synthesis of biologically active compounds.
Ethylene is the byproduct of olefin metathesis reactions that involve one or more terminal alkenes. Its volatility is one reason why many cross‐metathesis or ring‐closing metathesis processes, which are reversible transformations, are efficient. However, because ethylene can be converted to a methylidene complex, which is a highly reactive but relatively unstable species, its concentration can impact olefin metathesis in other ways. In some cases, introducing excess ethylene can increase reaction rate owing to faster catalyst initiation. Ethylene and a derived methylidene complex can also advantageously inhibit substrate or product homocoupling, and/or divert a less selective pathway. In other instances, a methylidene's low stability and high activity may lead to erosion of efficiency and/or kinetic selectivity, making it preferable that ethylene is removed while being generated. If methylidene decomposition is so fast that there is little or no product formation, it is best that ethylene and methylidene complex formation is avoided altogether. This is accomplished by the use of di‐ or trisubstituted alkenes in stereoretentive processes, which includes adopting methylene capping strategy. Here, we analyze the different scenarios through which ethylene and the involvement of methylidene complexes can be manipulated and managed so that an olefin metathesis reaction may occur more efficiently and/or more stereoselectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.