Energy has become the key material basis of social development. In this work, liquid capric acid-paraffin was evenly adsorbed in the pore structure of expanded graphite (EG) by a physical adsorption method, and the new composite phase change material of capric acid-paraffin/expanded graphite (CA-P/EG) was prepared. The Fourier transform infrared (FT-IR) curves of CA-P/EG composites did not change after 1000 cycles, and there was no new characteristic absorption peak, indicating that CA-P/EG composites have good chemical stability. The results showed that the optimum content of CA-P/EG in a phase change energy storage gypsum board was 20%, and the wet bending strength and compressive strength were 2.42 and 6.45 MPa, respectively. The water absorption was 16.37%, and the apparent density was 1.410 g/cm 3 . In addition, the melting and freezing temperatures were 26.40 and 23.10 °C, and the latent heats of melting and freezing were 27.20 and 25.69 J/g, respectively. It was found that the gypsum board has excellent thermal stability after 400 times of melting−freezing cycling and that the heat storage capacity increases with the increase of the CA-P/EG content and the thickness of the gypsum board.
Two kinds of CA–SA-based ternary phase change materials (PCMs), namely, capric acid–stearic acid–palmitic acid (CA–SA–PA) and capric acid–stearic acid–octadecanol (CA–SA–OD), were prepared by the melting–blending method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.