Background
Rather low vaccination rates for Human papillomavirus (HPV) and pre-existing cervical cancer patients with limited therapeutic strategies ask for more precise prognostic model development. On the other side, the clinical significance of circadian clock signatures in cervical cancer lacks investigation.
Methods
Subtypes classification based upon eight circadian clock core genes were implemented in TCGA-CESC through k-means clustering methods. Afterwards, KEGG, GO and GSEA analysis were conducted upon differentially expressed genes (DEGs) between high and low-risk groups, and tumor microenvironment (TME) investigation by CIBERSORT and ESTIMATE. Furthermore, a prognostic model was developed by cox and lasso regression methods, and verified in GSE44001 by time-dependent receiver-operating characteristic curve (ROC) analysis. Lastly, FISH and IHC were used for validation of CCL20 expression in patients’ specimens and U14 subcutaneous tumor models were built for TME composition.
Results
We successfully classified cervical patients into high-risk and low-risk groups based upon circadian-oscillation-signatures. Afterwards, we built a prognostic risk model composed of GJB2, CCL20 and KRT24 with excellent predictive value on patients’ overall survival (OS). We then proposed metabolism unbalance, especially for glycolysis, and immune related pathways to be major enriched signatures between the high-risk and low-risk groups. Then, we proposed an ‘immune-desert’-like suppressive myeloid cells infiltration pattern in high-risk group TME and verified its resistance to immunotherapies. Finally, CCL20 was proved positively correlated with real-world patients’ stages and induced significant less CD8+ T cells and more M2 macrophages infiltration in mouse model.
Conclusions
We unraveled a prognostic risk model based upon circadian oscillation and verified its solidity. Specifically, we unveiled distinct TME immune signatures in high-risk groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.