Owing to de ciency of lymphatic re ux in the tumor, the retention of tumor interstitial uid causes the aggravation of tumor interstitial pressure (TIP), which leads to unsatisfactory tumor penetration of nanomedicine. It is the main inducement of tumor recurrence and metastasis. Herein, we design a pyroelectric catalysis-based "Nano-lymphatic" to decrease the TIP for enhanced tumor penetration and treatments. It realizes photothermal therapy and decomposition of tumor interstitial uid under NIR-II laser irradiation after reaching the tumor, which reduces the TIP for enhanced tumor penetration.Simultaneously, reactive oxygen species generated during the pyroelectric catalysis can further damage deep tumor stem cells. The results indicate that the "Nano-lymphatic" relieves 52% of TIP, leading to enhanced tumor penetration, which effectively inhibits the tumor proliferation (93.75%) and recurrence.Our nding presents a novel strategy to reduce TIP by pyroelectric catalysis for enhanced tumor penetration and improved treatments, which is of great signi cance for drug delivery.
Hybrid liposome/metal nanoparticles are promising candidate drug-carriers for therapy of various diseases due to their unique photothermal effect. In this study, self-crystallized gold nanoparticles (Au NPs) and doxorubicin (DOX) were co-encapsulated within liposomes (Au/DOX-Lips) by thin film hydration and gel separation technology. The surface plasmon resonance bands of drug-carriers were controllable in the near-infrared (NIR) zone. When the complex liposome/metallic hybrids were irradiated by NIR light, they displayed higher endocytosis efficiency following the fracture of liposomal membranes and the release of Au NPs. Then, the Au NPs penetrated further into deeper tumor tissue to accomplish photothermal treatment. The Au/DOX-Lips showed an excellent antitumor effect, whose inhibition rate for tumor cells was up to 78.28%. In experiments on mice bearing tumors, the Au/DOX-Lips treated mice exhibited superior tumor suppression. This novel drug system provides huge potential for biomedical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.