While software defined network (SDN) brings more innovation to the development of future networks, it also faces a more severe threat from DDoS attacks. In order to deal with the single point of failure on SDN controller caused by DDoS attacks, we propose a framework for detection and defense of DDoS attacks in the SDN environment. Firstly, we deploy a trigger mechanism of DDoS attack detection on data plane to screen for abnormal flows in the network. Then, we use a combined machine learning algorithm based on K-Means and KNN to exploit the rate characteristics and asymmetry characteristics of the flows and to detect the suspicious flows determined by the detection trigger mechanism. Finally, the controller will take corresponding actions to defense against the attacks. In this paper, we propose a new framework of cooperative detection methods of control plane and data plane, which effectively improve the detection accuracy and efficiency, and prevent DDoS attacks on SDN. INDEX TERMS Software Defined Network, Distributed Denial of Service (DDoS), collaborative detection, traffic characteristics, detection trigger.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.