PurposeTo develop and validate a robust and accurate registration pipeline for automatic contour propagation for online adaptive Intensity‐Modulated Proton Therapy (IMPT) of prostate cancer using software and deep learning.MethodsA three‐dimensional (3D) Convolutional Neural Network was trained for automatic bladder segmentation of the computed tomography (CT) scans. The automatic bladder segmentation alongside the computed tomography (CT) scan is jointly optimized to add explicit knowledge about the underlying anatomy to the registration algorithm. We included three datasets from different institutes and CT manufacturers. The first was used for training and testing the ConvNet, where the second and the third were used for evaluation of the proposed pipeline. The system performance was quantified geometrically using the dice similarity coefficient (DSC), the mean surface distance (MSD), and the 95% Hausdorff distance (HD). The propagated contours were validated clinically through generating the associated IMPT plans and compare it with the IMPT plans based on the manual delineations. Propagated contours were considered clinically acceptable if their treatment plans met the dosimetric coverage constraints on the manual contours.ResultsThe bladder segmentation network achieved a DSC of 88% and 82% on the test datasets. The proposed registration pipeline achieved a MSD of 1.29 ± 0.39, 1.48 ± 1.16, and 1.49 ± 0.44 mm for the prostate, seminal vesicles, and lymph nodes, respectively, on the second dataset and a MSD of 2.31 ± 1.92 and 1.76 ± 1.39 mm for the prostate and seminal vesicles on the third dataset. The automatically propagated contours met the dose coverage constraints in 86%, 91%, and 99% of the cases for the prostate, seminal vesicles, and lymph nodes, respectively. A Conservative Success Rate (CSR) of 80% was obtained, compared to 65% when only using intensity‐based registration.ConclusionThe proposed registration pipeline obtained highly promising results for generating treatment plans adapted to the daily anatomy. With 80% of the automatically generated treatment plans directly usable without manual correction, a substantial improvement in system robustness was reached compared to a previous approach. The proposed method therefore facilitates more precise proton therapy of prostate cancer, potentially leading to fewer treatment‐related adverse side effects.
3D optical coherence tomography angiography (OCT-A) is a novel and non-invasive imaging modality for analyzing retinal diseases. The studies of microvasculature in 2D en face projection images have been widely implemented, but comprehensive 3D analysis of OCT-A images with rich depth-resolved microvascular information is rarely considered. In this paper, we propose a robust, effective, and automatic 3D shape modeling framework to provide a high-quality 3D vessel representation and to preserve valuable 3D geometric and topological information for vessel analysis. Effective vessel enhancement and extraction steps by means of curvelet denoising and optimally oriented flux (OOF) filtering are first designed to produce 3D microvascular networks.
In recent years, machine learning approaches have been successfully applied to the field of neuroimaging for classification and regression tasks. However, many approaches do not give an intuitive relation between the raw features and the diagnosis. Therefore, they are difficult for clinicians to interpret. Moreover, most approaches treat the features extracted from the brain (for example, voxelwise gray matter concentration maps from brain MRI) as independent variables and ignore their spatial and anatomical relations. In this paper, we present a new Support Vector Machine (SVM)-based learning method for the classification of Alzheimer's disease (AD), which integrates spatial-anatomical information. In this way, spatial-neighbor features in the same anatomical region are encouraged to have similar weights in the SVM model. Secondly, we introduce a group lasso penalty to induce structure sparsity, which may help clinicians to assess the key regions involved in the disease. For solving this learning problem, we use an accelerated proximal gradient descent approach. We tested our method on the subset of ADNI data selected by Cuingnet et al. (2011) for Alzheimer's disease classification, as well as on an independent larger dataset from ADNI. Good classification performance is obtained for distinguishing cognitive normals (CN) vs. AD, as well as on distinguishing between various sub-types (e.g. CN vs. Mild Cognitive Impairment). The model trained on Cuignet's dataset for AD vs. CN classification was directly used without re-training to the independent larger dataset. Good performance was achieved, demonstrating the generalizability of the proposed methods. For all experiments, the classification results are comparable or better than the state-of-the-art, while the weight map more clearly indicates the key regions related to Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.