The synthesis of wurtzite-type ZnS nanoparticles by an electric discharge submerged in molten sulfur is reported. Using a pulsed plasma between two zinc electrodes of diameter 5 mm in molten sulfur, we have synthesized high-temperature phase (wurtzite-type) ZnS nanocrystals with an average size of about 20 nm. The refined lattice parameters of the synthesized wurtzite-type ZnS nanoparticles were found to be larger than those of the reported ZnS (JCPDS card no 36-1450). Synthesis of ZnMgS (solid solution of ZnS and MgS) was achieved by using ZnMg alloys as both cathode and anode electrodes. UV-visible absorption spectroscopy analysis showed that the absorption peak of the as-prepared ZnS sample (319 nm) displays a blue-shift compared to the bulk ZnS (335 nm). Photoluminescence spectra of the samples revealed peaks at 340, 397, 423, 455 and 471 nm, which were related to excitonic emission and stoichiometric defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.