DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry-Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre-DECIGO first and finally DECIGO in 2024.
A truncated moment formalism for general relativistic radiation hydrodynamics, based on Thorne's moment formalism, is derived. The fluid rest frame is chosen to be the fiducial frame for defining the radiation moments. Then, zeroth-, first-, and second-rank radiation moments are defined from the distribution function with a physically reasonable assumption for it in the optically thin and thick limits. The source terms are written, focusing specifically on the neutrino transfer and neglecting higher harmonic angular dependence of the reaction angle. Finally, basic equations for a truncated moment formalism for general relativistic radiation hydrodynamics in a closed covariant form are derived assuming a closure relation among the radiation stress tensor, energy density, and energy flux, and a variable Eddington factor, which works well. We note that only electron neutrinos can be degenerate in general. For antielectron neutrinos, μ c < 0 and for muon and tau neutrinos, μ c = 0, when these neutrinos are in thermal equilibrium with matter. Thus, these are not degenerate in general.
We present numerical results on two-(2D) and three-dimensional (3D) hydrodynamic core-collapse simulations of an 11.2M ⊙ star. By changing numerical resolutions and seed perturbations systematically, we study how the postbounce dynamics is different in 2D and 3D. The calculations were performed with an energy-dependent treatment of the neutrino transport based on the isotropic diffusion source approximation scheme, which we have updated to achieve a very high computational efficiency. All the computed models in this work including nine 3D models and fifteen 2D models exhibit the revival of the stalled bounce shock, leading to the possibility of explosion. All of them are driven by the neutrino-heating mechanism, which is fostered by neutrino-driven convection and the standing-accretion-shock instability (SASI). Reflecting the stochastic nature of multi-dimensional (multi-D) neutrino-driven explosions, the blast morphology changes from models to models. However, we find that the final fate of the multi-D models whether an explosion is obtained or not, is little affected by the explosion stochasticity. In agreement with some previous studies, higher numerical resolutions lead to slower onset of the shock revival in both 3D and 2D. Based on the self-consistent supernova models leading to the possibility of explosions, our results systematically show that the revived shock expands more energetically in 2D than in 3D.
We present numerical results on three-dimensional (3D) hydrodynamic core-collapse simulations of an 11.2M ⊙ star. By comparing one-(1D) and two-dimensional(2D) results with those of 3D, we study how the increasing spacial multi-dimensionality affects the postbounce supernova dynamics. The calculations were performed with an energy-dependent treatment of the neutrino transport that is solved by the isotropic diffusion source approximation scheme. In agreement with previous study, our 1D model does not produce explosions for the 11.2 M ⊙ star, while the neutrino-driven revival of the stalled bounce shock is obtained both in the 2D and 3D models. The standing accretion-shock instability (SASI) is observed in the 3D models, in which the dominant mode of the SASI is bipolar (ℓ = 2) with its saturation amplitudes being slightly smaller than 2D. By performing a tracer-particle analysis, we show that the maximum residency time of material in the gain region becomes longer in 3D due to non-axisymmetric flow motions than in 2D, which is one of advantageous aspects of 3D models to obtain neutrino-driven explosions. Our results show that convective matter motions below the gain radius become much more violent in 3D than in 2D, making the neutrino luminosity larger for 3D. Nevertheless the emitted neutrino energies are made smaller due to the enhanced cooling. Our results indicate whether these advantages for driving 3D explosions could or could not overwhelm the disadvantages is sensitive to the employed numerical resolutions. An encouraging finding is that the shock expansion tends to become more energetic for models with finer resolutions. To draw a robust conclusion, 3D simulations with much more higher numerical resolutions and also with more advanced treatment of neutrino transport as well as of gravity are needed, which could be hopefully practicable by utilizing forthcoming Petaflops-class supercomputers.
By performing axisymmetric hydrodynamic simulations of core-collapse supernovae with spectral neutrino transport based on the isotropic diffusion source approximation scheme, we support the assumption that the neutrino-heating mechanism aided by the standing accretion shock instability (SASI) and convection can initiate an explosion of a 13$\ M_{\odot}$ star. Our results show that bipolar explosions are more likely to be associated with models that include rotation. We point out that models that form a north–south symmetric bipolar explosion can lead to larger explosion energies than the corresponding unipolar explosions can.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.