1-Palmitoyl-2-linoleoylphosphatidylcholine monohydroperoxide (PC 16:0/18:2-OOH) and 1-stearoyl-2-linoleoylphosphatidylcholine monohydroperoxide (PC 18:0/18:2-OOH) were measured by liquid chromatography/mass spectrometry (LC/MS) using nonendogenous 1-palmitoyl-2-heptadecenoylphosphatidylcholine monohydroperoxide as an internal standard. The calibration curves for synthetic PC 16:0/18:2-OOH and PC 18:0/18:2-OOH, which were obtained by direct injection of the internal standard into the LC/MS system, were linear throughout the calibration range (0.8-12.8 pmol). Within-day and between-day coefficients of variation were less than 10%, and the recoveries were between 86% and 105%. The limit of detection (LOD) and the limit of quantification (LOQ) were determined using synthetic standards. The LOD (signal-to-noise ratio 3:1) was 0.01 pmol, and the LOQ (signal-to-noise ratio 6:1) was 0.08 pmol for both PC 16:0/18:2-OOH and PC 18:0/18:2-OOH. With use of this method, the concentrations of PC 16:0/18:2-OOH and PC 18:0/18:2-OOH in the lipoprotein fractions during copper-mediated oxidation were determined. We prepared oxLDL and oxHDL by incubating native LDL and native HDL from human plasma (n = 10) with CuSO(4) for up to 4 h. The time course of the PC 16:0/18:2-OOH and PC 18:0/18:2-OOH levels during oxidation consisted of three phases. For oxidized LDL, both compounds exhibited a slow lag phase and a subsequent rapidly increasing propagation phase, followed by a gradually decreasing degradation phase. In contrast, for oxidized HDL, both compounds initially exhibited a prompt propagation phase with a subsequent plateau phase, followed by a rapid degradation phase. The analytical LC/MS method for phosphatidylcholine hydroperoxides might be useful for the analysis of biological samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.