Dialdehyde sodium alginate (DSA) with wide molecular weight distribution was prepared by periodate oxidation without alcohol‐precipitation. Its tanning properties in fur processing were investigated. It was found that this DSA could endow fur with high shrinkage temperature (Ts, 89 °C) and area yield (107%), showing better tanning properties than conventional dialdehyde sodium alginate product that was prepared by repeated alcohol‐precipitation process and thus had narrow molecular weight distribution. Low molecular weight components in DSA mainly contributed to crosslinkage and dispersion of the collagen fiber network, viz. tanning effect, while high molecular weight DSA components contributed to filling performance. SEM analysis illustrated that satisfactory dispersion of skin matrix and intact scale layer of wool were achieved by DSA tanning. The DSA tanned fur exhibited reasonable resistance to oxidation bleaching and presented a better performance in physical properties compared with traditional chrome tanned fur after fatliquoring. Besides, the DSA tanning system led to a better treatability of tanning and post‐tanning wastewaters in view of chrome‐free and higher biodegradability. The DSA with wide molecular weight distribution is a potential sustainable tanning agent in terms of both preparation and tanning processes.
Porous structures are essential for some collagen-based biomaterials and can be regulated by crosslinkers. Herein, dialdehyde carboxymethyl cellulose (DCMC) crosslinkers with similar size but different aldehyde group contents were prepared through periodate oxidation of sodium carboxymethyl cellulose with varying degrees of substitution (DS). They can penetrate into the hierarchy of fibril and form inter-molecular and intra-fibril cross-linking within the collagen matrix due to their nanoscale sizes and reactive aldehyde groups. The collagen matrices possessed higher porosity, significantly greater proportion of large pores (Φ > 10 μm), and shorter D-periodicity after cross-linking, showing greater potential for biomedical applications. In addition, the crosslinked collagen matrices showed satisfactory biocompatibility and biodegradation. The decreased DS of carboxymethyl cellulose, which led to the increased aldehyde content of corresponding DCMC, brought about an enhanced cross-linking degree, porosity, and proportion of large pores of the crosslinked collagen matrix. DCMC dosage of 6% was sufficient for cross-linking and pore formation. Excess DCMC would physically deposit in the matrix and decrease the porosity instead. Therefore, the desired pore properties of the collagen matrix could be obtained by regulating the structure of DCMC and thereby achieving the required functions of the biomaterial.
Amphoteric polymer can be used as retanning agent in leather manufacture. It is particularly useful in chrome-free tanning systems since it can regulate the charge properties of chrome-free leather and enhance the fixation of anionic post-tanning chemicals in leather. However, the aggregation and precipitation of amphoteric polymer retanning agents around the isoelectric point (pI) hinder their wide application. Herein, we synthesized five amphoteric acrylic polymers (AAPs) by free radical copolymerization with acrylic acid and five different cationic acrylic monomers. The effect of cationic monomer structure on the aggregation behavior of AAPs was investigated. The aggregation of AAPs in aqueous solution showed pH and concentration dependence. Light scattering analysis showed that Poly (AA-co-MAPTAC) and Poly (AA-co-DMAPMA) were in the shape of coiled linear flexible chains with small particle size (Rg 7.6 nm and 14.8 nm, respectively) near the pI. However, Poly (AA-co-DAC), Poly (AA-co-DMC) and Poly (AA-co-DMAEMA) were in the shape of hollow spheres and exhibited serious aggregation. Quantum chemical calculations suggested that the amide groups in the cationic monomers MAPTAC and DMAPMA enhanced the nucleophilicity of AAPs. Thus the corresponding AAPs could carry a large number of cationic charges to slow their aggregation when the pH just climbed over the pI. The results are expected to provide theoretical reference for the synthesis and widespread application of AAPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.