The contamination of environmental water with organic pollutants poses significant challenges for society, and much effort has been directed toward the development of catalysts and methods that can decompose these pollutants. While effort has been directed toward the fabrication of Cu2O catalysts by ball milling, this technique can involve long preparation times and provide low yields. In this study, we synthesized a solid solution of Cu2O in 22 h by high-frequency electric-field-assisted ball milling below 40 °C in only one step under aqueous conditions. We investigated the catalytic activities of the produced Cu2O solid solution in the microwave-assisted degradation of dyes, namely rhodamine B, phenol red and methyl orange. The prepared Cu2O solid solution was very catalytically active and completely degraded the above-mentioned dyes within 2 min. The one-dimensional diffusion model and the phase boundary (planar) model were found to describe the kinetics well. Synergism between ball milling and the high-frequency electromagnetic field plays a key role in the preparation of Cu2O solid solution nanoparticles. Ball milling facilitates the relaxation of the Cu2O lattice and high-frequency electromagnetic radiation accelerates the diffusion of Fe atoms into the Cu2O crystal along the (111) crystal plane, quickly leading to the formation of a Cu2O solid solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.