A 400 W high-power laser was used to fabricate 200-µm-thick Ti-6Al-4V samples to evaluate the effects of small (50 μm) and large (200 μm) beam diameter on density, microstructure and mechanical properties. A series of single-track experiments demonstrated that it was challenging for the small-beam laser to fabricate smooth and defect-free scan tracks. A larger beam diameter efficiently avoided process instability and provided a more stable and uniform melt pool. By increasing the beam diameter, the density of multilayer samples reached 99.95% of the theoretical value, which is much higher than that achieved with the small beam diameter. However, it was difficult to completely eliminate defects due to serious spatter and evaporation. Moreover, all of the generated samples had relatively coarse surfaces. For the large beam diameter of 200 µm, the optimal yield strength, ultimate tensile strength and elongation were 1150 MPa, 1200 MPa and 8.02%, respectively. In comparison, the small beam diameter of 50 µm resulted in values of 1035 MPa, 1100 MPa and 5.91%, respectively. Overall, the large-diameter laser is more suitable for high-power selective laser melting (SLM) technology, especially for thick layers.
Selective laser melting (SLM) is a potential additive manufacturing (AM) technology. However, the application of SLM was confined due to low efficiency. To improve efficiency, SLM fabrication with a high layer thickness and fine powder was systematically researched, and the void areas and hollow powders can be reduced by using fine powder. Single-track experiments were used to narrow down process parameter windows. Multi-layer fabrication relative density can be reached 99.99% at the exposure time-point distance-hatch space of 120 µs-40 µm-240 µm. Also, the building rate can be up to 12 mm 3 /s, which is about 3-10 times higher than the previous studies. Three typical defects were found by studying deeply, including the un-melted defect between the molten pools, the micro-pore defect within the molten pool, and the irregular distribution of the splashing phenomenon. Moreover, the microstructure is mostly equiaxed crystals and a small amount of columnar crystals. The averages of ultimate tensile strength, yield strength, and elongation are 625 MPa, 525 MPa, and 39.9%, respectively. As exposure time increased from 80 µs to 200 µs, the grain size is gradually grown up from 0.98 µm to 2.23 µm, the grain aspect ratio is close to 1, and the tensile properties are shown as a downward trend. The tensile properties of high layer thickness fabricated are not significantly different than those with a coarse-powder layer thickness of low in previous research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.