Highlights
Wavelet coherence can quantify neurovascular coupling (NVC) based on NIRS and EEG.
NVC after birth can predict infants who later develop abnormal brain MRI.
NVC cutoff of 10% or less resulted in an AUC of 0.808 predicting abnormal MRI.
Neurovascular coupling is superior to clinical scores to classify HIE after birth.
Birth asphyxia constitutes a major global public health burden for millions of infants with a critical need for real time physiological biomarkers. This proof of concept study targets the translational rigor of such biomarkers and aims to examine whether the variability in the amplitude-integrated EEG (aEEG) outputs impact the determination of neurovascular coupling (NVC) in newborns with encephalopathy. A convenience sample with neonatal asphyxia were monitored for twenty hours in the first day of life with EEG and near infrared spectroscopy (NIRS)-based cerebral tissue oxygen saturation (SctO2). NVC between aEEG and NIRS-SctO2 was assessed using wavelet transform coherence (WTC) analysis, specifically by the wavelet total pixel number of significant coherences within 95% confidence interval. The raw EEG was converted to aEEG using three different methods: Method (M1) derives from the algorithm by Zhang and Ding. Method (M2) uses a Neonatal EEG Analysis Toolbox (WU-NEAT). Method (M3) extracts output directly from a commercial platform with an undisclosed algorithm. Our results demonstrate excellent agreement with Bland Altman comparisons for WTC-based NVC irrespective of the algorithms used, despite significant heterogeneities in the aEEG tracings produced by three algorithms. Our findings confirm the robustness of NVC wavelet analysis in Neonatal Encephalopathy related to HIE.
There is a critical need for development of real time physiological biomarkers for birth asphyxia that constitutes a major global public health burden. Our recent study (Scientific Reports, V10:9183, 2020) established a novel non-invasive neurovascular coupling (NVC) assessment in newborns using dynamic wavelet transform coherence (WTC) analysis irrespective of different aEEG algorithms. As an extended study, the current paper examines whether the variability in processed EEG and amplitude-EEG (aEEG) outputs would impact the determination of NVC in newborns with encephalopathy. Concurrent processed EEG tracings and regional near infrared spectroscopy (NIRS)-based cerebral tissue oxygen saturation (SctO2) readings during a period of twenty hours in their first day of life were selected and processed in this study. After bandpass-filtered in 2–15 Hz, rectified, and down-sampled at 0.21 Hz, the processed EEG tracings along with NIRS-SctO2 (0.21 Hz) were used to perform WTC analysis, followed by comparison of WTC-metrics between SctO2-processed EEG coherence and SctO2-aEEG coherence using Bland–Altman statistics. Our results demonstrated high and significant correlation (R2 = 0.96, p < 0.001) between NVC assessments by SctO2-processed EEG and SctO2-aEEG coherence, confirming that band-passed, rectified, and down-sampled processed EEG, or aEEG, can be paired with NIRS-SctO2 to assess NVC in newborns with encephalopathy. Findings indicate the feasibility of a simpler approach to NVC in neonates by using directly processed EEG, instead of aEEG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.