Quantile regression is an important tool for describing the characteristics of conditional distributions. Population conditional quantile functions cannot cross for different quantile orders. Unfortunately estimated regression quantile curves often violate this and cross each other, which can be very annoying for interpretations and further analysis. In this paper we are concerned with flexible varying-coefficient modelling, and develop methods for quantile regression that ensure that the estimated quantile curves do not cross. A second aim of the paper is to allow for some heteroscedasticity in the error modelling, and to also estimate the associated variability function. We investigate the finite-sample performances of the discussed methods via simulation studies. Some applications to real data illustrate the use of the methods in practical settings.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.