As a result of the worldwide transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has evolved into an unprecedented pandemic. Currently, with unavailable pharmaceutical treatments and low vaccination rates, this novel coronavirus results in a great impact on public health, human society, and global economy, which is likely to last for many years. One of the lessons learned from the COVID-19 pandemic is that a long-term system with non-pharmaceutical interventions for preventing and controlling new infectious diseases is desirable to be implemented. Internet of things (IoT) platform is preferred to be utilized to achieve this goal, due to its ubiquitous sensing ability and seamless connectivity. IoT technology is changing our lives through smart healthcare, smart home, and smart city, which aims to build a more convenient and intelligent community. This paper presents how the IoT could be incorporated into the epidemic prevention and control system. Specifically, we demonstrate a potential fog-cloud combined IoT platform that can be used in the systematic and intelligent COVID-19 prevention and control, which involves five interventions including COVID-19 Symptom Diagnosis, Quarantine Monitoring, Contact Tracing & Social Distancing, COVID-19 Outbreak Forecasting, and SARS-CoV-2 Mutation Tracking. We investigate and review the state-of-the-art literatures of these five interventions to present the capabilities of IoT in countering against the current COVID-19 pandemic or future infectious disease epidemics.
This work proposes a continuous user verification system based on unique human respiratory-biometric characteristics extracted from the off-the-shelf WiFi signals. Our system innovatively re-uses widely available WiFi signals to capture the unique physiological characteristics rooted in respiratory motions for continuous authentication. Different from existing continuous authentication approaches having limited applicable scenarios due to their dependence on restricted user behaviors (e.g., keystrokes and gaits) or dedicated sensing infrastructures, our approach can be easily integrated into any existing WiFi infrastructure to provide non-invasive continuous authentication independent of user behaviors. Specifically, we extract representative features leveraging waveform morphology analysis and fuzzy wavelet transformation of respiration signals derived from the readily available channel state information (CSI) of WiFi. A respirationbased user authentication scheme is developed to accurately identify users and reject spoofers. Extensive experiments involving 20 subjects demonstrate that the proposed system can achieve a high authentication success rate of over 93% and robustly defend against various types of attacks. CCS CONCEPTS • Security and privacy → Biometrics; Multi-factor authentication; • Human-centered computing → Ubiquitous and mobile computing design and evaluation methods;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.