The main goal of this paper is to estimate the Hölder norm of a fractal version of the Hilbert transform in the Douglis analysis context acting from Hölder spaces of Douglis algebra valued functions defined on h-summable curves.
We investigate an electromagnetic Dirichlet type problem for the 2D quaternionic time-harmonic Maxwell system over a great generality of fractal closed type curves, which bound Jordan domains in R2. The study deals with a novel approach of h-summability condition for the curves, which would be extremely irregular and deserve to be considered fractals. Our technique of proofs is based on the intimate relations between solutions of time-harmonic Maxwell system and those of the Dirac equation through some nonlinear equations, when both cases are reformulated in quaternionic forms.
desplazado y su estrecha relación con los principales operadores del cálculo vectorial, es posible establecer una conexión directa entre las soluciones del sistema de Maxwell tiempo-armónico y dos ecuaciones cuaterniónicas. Además, se expone la aplicación de la condición de Lorentz para transformar el sistema de Maxwell tiempo-armónico en una simple ecuación cuaterniónica en función de los potenciales escalar y vectorial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.