Inspired by the epidermal-dermal and outer microstructures of the human fingerprint, a novel flexible sensor device is designed to improve haptic perception and surface texture recognition, which is consisted of single-walled carbon nanotubes, polyethylene, and polydimethylsiloxane with interlocked and outer micropyramid arrays. The sensor shows high pressure sensitivity (-3.26 kPa in the pressure range of 0-300 Pa), and it can detect the shear force changes induced by the dynamic interaction between the outer micropyramid structure on the sensor and the tested material surface, and the minimum dimension of the microstripe that can be discerned is as low as 15 µm × 15 µm (interval × width). To demonstrate the texture discrimination capability, the sensors are tested for accurately discerning various surface textures, such as the textures of different fabrics, Braille characters, the inverted pyramid patterns, which will have great potential in robot skins and haptic perception, etc.
As chemical sensors are in great demand for portable and wearable analytical applications, it is highly desirable to develop an all-solid-state ion-selective electrode (ISE) and reference electrode (RE) platform with simplicity and stability. Here we propose a wearable sensor platform with a new type of all-solid-state ISE based on a gold nanodendrite (AuND) array electrode as the solid contact and a poly(vinyl acetate)/inorganic salt (PVA/KCl) membrane-coated all-solid-state RE. A simple and controllable method was developed to fabricate the AuNDs on a microwell array patterned chip by one-step electrodeposition without additional processing. For the first time, the AuND electrodes with different real surface area and double layer capacitance were developed as solid contact of the Na-ISE to investigate the relationship between performance of the ISE and surface area. As-prepared AuND-ISE with larger surface area (∼7.23 cm) exhibited enhanced potential stability compared to those with smaller surface area (∼1.85 cm) and to bare Au ISE. Important as the ISE, the PVA/KCl membrane-coated Ag/AgCl RE exhibited highly stable potential even after 3 months' storage. Finally, a wearable sweatband sensor platform was developed for efficient sweat collection and real-time analysis of sweat sodium during indoor exercise. This all-solid-state ISE and RE integrated sensor platform provided a very simple and reliable way to construct diverse portable and wearable devices for healthcare, sports, clinical diagnosis, and environmental analysis applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.