In order to improve the adhesive and physical-mechanical properties of epoxy-thiocol compositions cured without heat treatment, we propose to carry out the reaction of interaction between thiokol mercaptan groups and oxirane cycles of epoxy resin at an elevated temperature before introducing a curing agent, and then use the product of this thioetherification reaction for curing at room temperature. The temperature range of the thioetherification reaction (90–1800С) was determined by the method of differential scanning calorimetry. The optimal temperature (1600С) and duration of the preliminary thioetherification reaction (2 hours) were determined, which ensure the maximum level of adhesive strength and physical-mechanical properties. It was shown that composite materials based on the products of the thioetherification reaction significantly outperform analogs based on mechanical mixtures of epoxy resin and thiokol in terms of cohesive and adhesive strength, deformation capacity, fracture work and specific impact strength. The impact resistance and shear strength of adhesive joints are especially significantly increased during the curing of the compositions without external heat supply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.